Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Genotype–phenotype correlations of neurofibromatosis type 1: a cross-sectional study from a large Chinese cohort

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Neurofibromatosis type 1 (NF1) is a highly heterogeneous autosomal genetic disorder characterized by a broad spectrum of clinical and molecular manifestations. The correlations between genotype and phenotype in NF1 remain elusive. This study aimed to elucidate genotype–phenotype associations in a large Chinese cohort of NF1 patients.

Methods

We included NF1 patients from our center who underwent genetic testing for NF1 variants and systemic examination. Genotype–phenotype correlation analyses were performed, focusing on variation types and involved neurofibromin domains.

Results

A total of 195 patients were enrolled, comprising 105 males and 90 females, with a median age of 18 years. Truncating variants, single amino acid variations, and splicing variants accounted for 139/195 (71.3%), 23/195 (11.8%), and 33/195 (16.9%), respectively. Patients with splicing variants exhibited a significantly higher prevalence of spinal plexiform neurofibromas (spinal PNF) than those with truncating variants (76.4% vs. 51.8%; p = 0.022). Variations affecting the PKC domain were associated with higher rates of cutaneous neurofibromas (CNF) (100% vs. 64.9%, p < 0.001), Lisch nodules (100% vs. 61.2%, p < 0.001), plexiform neurofibromas (PNF) (100% vs. 95.7%, p = 0.009), and psychiatric disorders (11.8% vs. 1.6%, p = 0.042). Patients with mutations in the CSRD had an elevated risk of secondary primary malignancies (11.6% vs. 2.8%, p = 0.015). GRD involvement might enhance the risk of Lisch nodules (76.9% vs. 53.7%, p = 0.044). Variations in the Sec14-PH domain were correlated with a higher rate of CNF (76.8% vs. 58.6%, p = 0.014). Additionally, we found that the p.R1748* variants carry a high risk of malignancy.

Conclusion

Our study suggested some novel genotype–phenotype correlations within a Chinese cohort, providing innovative insights into this complex field that may contribute to genetic counseling, risk stratification, and clinical management for the NF1 population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ (2017) Neurofibromatosis type 1. Nat Rev Dis Primers 3(1):17004

    Article  PubMed  Google Scholar 

  2. Cimino PJ, Gutmann DH (2018) Chapter 51—neurofibromatosis type 1. In: Geschwind DH, Paulson HL, Klein C (eds) Handbook of clinical neurology, vol 148. Elsevier, Amsterdam, pp 799–811

    Google Scholar 

  3. Kallionpää RA, Uusitalo E, Leppävirta J, Pöyhönen M, Peltonen S, Peltonen J (2018) Prevalence of neurofibromatosis type 1 in the Finnish population. Genet Med 20(9):1082–1086

    Article  PubMed  Google Scholar 

  4. Huson SM, Harper PS, Compston DA (1988) Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111(6):1355–1381

    Article  PubMed  Google Scholar 

  5. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39(5):311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson BN, John AM, Handler MZ, Schwartz RA (2021) Neurofibromatosis type 1: new developments in genetics and treatment. J Am Acad Dermatol 84(6):1667–1676

    Article  CAS  PubMed  Google Scholar 

  7. Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y et al (2021) Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med 23(8):1506–1513

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mo J, Moye SL, McKay RM, Le LQ (2022) Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 41(9):1235–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ottenhoff MJ, Rietman AB, Mous SE, Plasschaert E, Gawehns D, Brems H et al (2020) Examination of the genetic factors underlying the cognitive variability associated with neurofibromatosis type 1. Genet Med 22(5):889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kayes LM, Burke W, Riccardi VM, Bennett R, Ehrlich P, Rubenstein A et al (1994) Deletions spanning the neurofibromatosis 1 gene: identification and phenotype of five patients. Am J Hum Genet 54(3):424–436

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Scala M, Schiavetti I, Madia F, Chelleri C, Piccolo G, Accogli A et al (2021) Genotype-phenotype correlations in neurofibromatosis type 1: a single-center cohort study. Cancers (Basel). 13(8):1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kehrer-Sawatzki H, Vogt J, Mußotter T, Kluwe L, Cooper DN, Mautner VF (2012) Dissecting the clinical phenotype associated with mosaic type-2 NF1 microdeletions. Neurogenetics 13(3):229–236

    Article  CAS  PubMed  Google Scholar 

  13. Koczkowska M, Chen Y, Callens T, Gomes A, Sharp A, Johnson S et al (2018) Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844–848. Am J Hum Genet 102(1):69–87

    Article  CAS  PubMed  Google Scholar 

  14. Koczkowska M, Callens T, Chen Y, Gomes A, Hicks AD, Sharp A et al (2020) Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat 41(1):299–315

    Article  CAS  PubMed  Google Scholar 

  15. Upadhyaya M, Huson SM, Davies M, Thomas N, Chuzhanova N, Giovannini S et al (2007) An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet 80(1):140–151

    Article  CAS  PubMed  Google Scholar 

  16. Forde C, Burkitt-Wright E, Turnpenny PD, Haan E, Ealing J, Mansour S et al (2022) Natural history of NF1 c.2970_2972del p.(Met992del): confirmation of a low risk of complications in a longitudinal study. Eur J Hum Genet: EJHG 30(3):291–297

    Article  CAS  PubMed  Google Scholar 

  17. Koczkowska M, Callens T, Gomes A, Sharp A, Chen Y, Hicks AD et al (2019) Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype-phenotype correlation. Genet Med 21(4):867–876

    Article  CAS  PubMed  Google Scholar 

  18. Rojnueangnit K, Xie J, Gomes A, Sharp A, Callens T, Chen Y et al (2015) High incidence of noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting parg1809: genotype-phenotype correlation. Hum Mutat 36(11):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pinna V, Lanari V, Daniele P, Consoli F, Agolini E, Margiotti K et al (2015) p.Arg1809Cys substitution in neurofibromin is associated with a distinctive NF1 phenotype without neurofibromas. Eur J Hum Genet 23(8):1068–1071

    Article  CAS  PubMed  Google Scholar 

  20. Santoro C, Maietta A, Giugliano T, Melis D, Perrotta S, Nigro V et al (2015) Arg (1809) substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur J Hum Genet 23(11):1460–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bettegowda C, Upadhayaya M, Evans DG, Kim A, Mathios D, Hanemann CO (2021) Genotype-phenotype correlations in neurofibromatosis and their potential clinical use. Neurology 97(7 Suppl 1):S91

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Güneş N, Yeşil G, Geyik F, Kasap B, Celkan T, Kebudi R et al (2021) Neurofibromatosis type 1: expanded variant spectrum with multiplex ligation-dependent probe amplification and genotype–phenotype correlation in 138 Turkish patients. Ann Hum Genet 85(5):155–165

    Article  PubMed  Google Scholar 

  23. Sabbagh A, Pasmant E, Laurendeau I, Parfait B, Barbarot S, Guillot B et al (2009) Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Hum Mol Genet 18(15):2768–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Minkelen R, van Bever Y, Kromosoeto JNR, Withagen-Hermans CJ, Nieuwlaat A, Halley DJJ et al (2014) A clinical and genetic overview of 18 years neurofibromatosis type 1 molecular diagnostics in the Netherlands. Clin Genet 85(4):318–327

    Article  PubMed  Google Scholar 

  25. Plotkin SR, Bredella MA, Cai W, Kassarjian A, Harris GJ, Esparza S et al (2012) Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLoS ONE 7(4):e35711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kotch C, Avery R, Getz KD, Bouffet E, de Blank P, Listernick R et al (2022) Risk factors for treatment-refractory and relapsed optic pathway glioma in children with neurofibromatosis type 1. Neuro Oncol 24(8):1377–1386

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ehara Y, Yamamoto O, Kosaki K, Yoshida Y (2017) Clinical severity in Japanese patients with neurofibromatosis 1 based on DNB classification. J Dermatol 44(11):1262–1267

    Article  CAS  PubMed  Google Scholar 

  28. Riccardi V, Ishibashi Y, Hori Y (1990) Tuberous sclerosis and neurofibromatosis-epidemiology, pathophysiology, biology and management. Ishibashi Y and Hori Y, New York

    Google Scholar 

  29. Paterra R, Bettinaglio P, Borghi A, Mangano E, Tritto V, Cesaretti C et al (2022) A translational approach to spinal neurofibromatosis: clinical and molecular insights from a Wide Italian Cohort. Cancers (Basel). 15(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alkindy A, Chuzhanova N, Kini U, Cooper DN, Upadhyaya M (2012) Genotype-phenotype associations in neurofibromatosis type 1 (NF1): an increased risk of tumor complications in patients with NF1 splice-site mutations? Hum Genomics 6(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mangoura D, Sun Y, Li C, Singh D, Gutmann DH, Flores A et al (2006) Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 25(5):735–745

    Article  CAS  PubMed  Google Scholar 

  32. De Schepper S, Boucneau JM, Westbroek W, Mommaas M, Onderwater J, Messiaen L et al (2006) Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol 126(3):653–659

    Article  PubMed  Google Scholar 

  33. Vallée B, Doudeau M, Godin F, Gombault A, Tchalikian A, de Tauzia ML et al (2012) Nf1 RasGAP inhibition of LIMK2 mediates a new cross-talk between Ras and Rho pathways. PLoS ONE 7(10):e47283

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trovó AB, Goloni-Bertollo EM, Teixeira MF, Tajara EH (2004) Presence of the R1748X mutation in the NF1 gene in a Brazilian patient with ectropion uveae. Ophthalmic Res 36(6):349–352

    Article  Google Scholar 

Download references

Acknowledgements

We thank patients and families for their generous collaboration.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82102344; 82172228; 82202470); Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 22MC1940300); Innovative research team of high-level local universities in Shanghai (SHSMU-ZDCX20210400); Natural Science Foundation of Shanghai (22ZR1422300); Shanghai Municipal Key Clinical Specialty (shslczdzk00901); the Project of Biobank (YBKA202204) from Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingfeng Li or Zhichao Wang.

Ethics declarations

Conflicts of interest

The authors state that there is no conflict of interest.

Ethics approval

This study was approved by the Ethics Committee of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SH9H-2019-T163-2) and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All patients/caregivers provided written informed consent prior to study participation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 545 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Zheng, T., Wang, W. et al. Genotype–phenotype correlations of neurofibromatosis type 1: a cross-sectional study from a large Chinese cohort. J Neurol 271, 1893–1900 (2024). https://doi.org/10.1007/s00415-023-12127-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-12127-w

Keywords