Abstract
Monadic MV-algebras are an algebraic model of first-order infinite-valued Łukasiewicz logic in which only one propositional variable is considered. In this paper, we determine a topological duality for these algebras following well-known P. Halmos’ and H. Priestley’s dualities.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Missouri
Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:476–490
Cignoli R (1991) Quantifiers on distributive lattices. Discrete Math 96:183–197
Cignoli R, D’Ottaviano I, Mundici D (2000) Algebraic foundations of many-valued reasoning. Trends in Logic Studia Logica Library, vol 7. Kluwer, Dordrecht
Cornish W, Fowler P (1977) Coproducts of De Morgan algebras. Bull Aust Math Soc 16:1–13
Di Nola A, Grigolia R (2004) On monadic \(MV\)-algebras. Ann Pure Appl Log 128(1–3):125139
Figallo Orellano A (2016) A preliminary study of MV-algebras with two quantifiers which commute. Stud Logica. doi:10.1007/s11225-016-9663-2
Font JM, Rodriguez AJ, Torrens A (1984) Wajsberg algebras. Stochastica 8(1):5–31
Halmos PR (1962) Algebraic logic. AMS Chelsea Publishing, New York
Lattanzi M (2004) Wajsberg algebras with a \(U\)-operator. J Multi-valued Log Soft Comput 10(4):315–338
Lattanzi M, Petrovich A (2008) A duality for monadic (n+1)-valued MV-algebras. In: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” congress (Spanish), pp 107–117
Martinez G (1990) The Priestley duality for Wajsberg algebras. Stud Log 49(1):31–46
Mundici D (1986) Interpretation of AF \(\text{ C }^{\ast }\)-algebras in Lukasiewicz sentential calculus. J Funct Anal 65(1):15–63
Rodriguez Salas AJ (1980) Un estudio algebraico de los Cálculos Proposicionales de Łukasiewicz, Tesis Doctoral, Universidad de Barcelona
Rutledge JD (1959) A preliminary investigation of the infinitely many-valued predicate calculus. Ph.D. Thesis, Cornell University
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this paper.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Figallo-Orellano, A. A topological duality for monadic MV-algebras. Soft Comput 21, 7119–7123 (2017). https://doi.org/10.1007/s00500-016-2255-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-016-2255-2