Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A topological duality for monadic MV-algebras

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Monadic MV-algebras are an algebraic model of first-order infinite-valued Łukasiewicz logic in which only one propositional variable is considered. In this paper, we determine a topological duality for these algebras following well-known P. Halmos’ and H. Priestley’s dualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Missouri

    MATH  Google Scholar 

  • Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:476–490

  • Cignoli R (1991) Quantifiers on distributive lattices. Discrete Math 96:183–197

    Article  MATH  MathSciNet  Google Scholar 

  • Cignoli R, D’Ottaviano I, Mundici D (2000) Algebraic foundations of many-valued reasoning. Trends in Logic Studia Logica Library, vol 7. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Cornish W, Fowler P (1977) Coproducts of De Morgan algebras. Bull Aust Math Soc 16:1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Di Nola A, Grigolia R (2004) On monadic \(MV\)-algebras. Ann Pure Appl Log 128(1–3):125139

    MATH  MathSciNet  Google Scholar 

  • Figallo Orellano A (2016) A preliminary study of MV-algebras with two quantifiers which commute. Stud Logica. doi:10.1007/s11225-016-9663-2

  • Font JM, Rodriguez AJ, Torrens A (1984) Wajsberg algebras. Stochastica 8(1):5–31

    MATH  MathSciNet  Google Scholar 

  • Halmos PR (1962) Algebraic logic. AMS Chelsea Publishing, New York

  • Lattanzi M (2004) Wajsberg algebras with a \(U\)-operator. J Multi-valued Log Soft Comput 10(4):315–338

    MATH  MathSciNet  Google Scholar 

  • Lattanzi M, Petrovich A (2008) A duality for monadic (n+1)-valued MV-algebras. In: Proceedings of the 9th “Dr. Antonio A. R. Monteiro” congress (Spanish), pp 107–117

  • Martinez G (1990) The Priestley duality for Wajsberg algebras. Stud Log 49(1):31–46

    Article  MATH  MathSciNet  Google Scholar 

  • Mundici D (1986) Interpretation of AF \(\text{ C }^{\ast }\)-algebras in Lukasiewicz sentential calculus. J Funct Anal 65(1):15–63

    Article  MATH  MathSciNet  Google Scholar 

  • Rodriguez Salas AJ (1980) Un estudio algebraico de los Cálculos Proposicionales de Łukasiewicz, Tesis Doctoral, Universidad de Barcelona

  • Rutledge JD (1959) A preliminary investigation of the infinitely many-valued predicate calculus. Ph.D. Thesis, Cornell University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Figallo-Orellano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figallo-Orellano, A. A topological duality for monadic MV-algebras. Soft Comput 21, 7119–7123 (2017). https://doi.org/10.1007/s00500-016-2255-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2255-2

Keywords