Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A new assessment of the mid-1970s abrupt atmospheric temperature change in the NCEP/NCAR reanalysis and associated solar forcing implications

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Based on the reanalysis data from the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP–NCAR) and solar radio irradiance (SRI) at 10.7 cm wavelength obtained from the National Oceanic and Atmospheric Administration’s Space Weather Prediction center, the abrupt temperature change in the mid-1970s and its possible association with solar irradiance variability have been investigated. The results show that a discontinuous abrupt change in the mid-1970s in the NCEP–NCAR reanalysis was observed in the tropical lower and middle stratospheric temperature. The shift in temperature and its timing agrees well with the climate regime shift discovered in the radiosonde observations (HadAT), European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), and many previous studies and manifests a statistically significant change at the 95% confidence level. A corresponding change of the SRI was identified in the mid 1970s although the statistical t test value is not very high. The running correlation with a 21-year moving time window exhibits a strong positive correlation between the solar cycle and atmospheric temperature in the tropical stratosphere during the period of 1948–2007. However, the positive correlation was broken at the time of the mid-1970s abrupt change and two peak positive correlation points were observed in 1972 and 1982, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balachandran NK, Rind D, Lonergan P, Shindell DT (1999) Effects of solar cycle variability on the lower stratosphere and the troposphere. J Geophys Res 104:27,321–27,339. doi:10.1029/1999JD900924

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM; Boss EM (2006) Climate-driven trends in contemporary ocean productivity. Nature 144. doi:10.1038/nature05317

  • Chao Y, Ghil M, McWilliams JC (2000) Pacific interdecadal variability in this century’s sea surface temperatures. Geophys Res Lett 27:2261–2264

    Article  Google Scholar 

  • Chelliah M, Bell GD (2004) Tropical multidecadal and interannual climate variability in the NCEP–NCAR reanalysis. J Climate 17:1777–1803

    Article  Google Scholar 

  • Chelliah M, Ropelewski CF (2000) Reanalysis-based tropospheric temperature estimates: uncertainties in the context of global climate change detection. J Climate 13:3187–3205

    Article  Google Scholar 

  • Crooks SA, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Climate 18:996–1015. doi:10.1175/JCLI-3308.1

    Article  Google Scholar 

  • Ebbesmeyer CC, Cayan Dr, McLain DR, Nichols FH, Peterson DH, Redmond KT (1991) 1976 step in the Pacific climate: forty environmental changes between 1968-75 and 1977-1984. In: Proc. 7th Ann. Pacific Climate Workshop, California Dept of Water Resources, Interagency Ecol. Stud. Prog. Report 26.

  • Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30(13):1711. doi:10.1029/2003GL017129

    Article  Google Scholar 

  • Haigh J, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J Climate 18:3672–3685. doi:10.1175/JCLI3472.1

    Article  Google Scholar 

  • Hansen J, Lebedeff S (1987) Global trends of measured surface air temperature. J Geophys Res 92:13345–13372

    Article  Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145

    Article  Google Scholar 

  • Hartmann B, Wendler G (2005) The Significance of the 1976 Pacific climate shift in the climatology of Alaska. J Climate 18:4824–4839

    Article  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007. The Physical Sciences Basis, Cambridge U. Press, New York. Available at http://ipcc-wg1.ucar.edu/wg1/wg1-report.html.

  • Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Climate 1:654–660

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The CEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  • Keckhut P, Chanin A, Hauchecornce M (1995) Midlatitude long term variability of the middle atmosphere trends and cyclic and episodic changes. J Geophy Res 100:18887–18897

    Article  Google Scholar 

  • Keckhut P, Cagnazzo C, Chanin M-L, Claud C, Hauchecorne A (2005) The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: part I–Assessment of observations. J Atmos Sol Terr Phys 67:940–947. doi:10.1016/j.jastp.2005.01.008

    Article  Google Scholar 

  • Kinter JL III, Fennessy MJ, Krishnamurthy V, Marx L (2004) An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP–NCAR reanalysis. J Climate 17:349–361

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kodera K, Shibata K (2006) Solar influence on the tropical stratosphere and troposphere in the northern summer. Geophys Res Lett 33:L19704. doi:10.1029/2006GL026659

    Article  Google Scholar 

  • Lean J, Rind D (1998) Climate forcing by changing solar radiation. J Climate 11:3069–3094

    Article  Google Scholar 

  • Mantua N, Hare S, Zhang Y, Wallace J, Francis R (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Matthes K, Kuroda Y, Kodera K, Langematz U (2006) Transfer of the solar signal from the stratosphere to the troposphere: northern winter. J Geophys Res 111:D06108. doi:10.1029/2005JD006283

    Article  Google Scholar 

  • McCarthy MP, Titchner HA, Thorne PW, Tett SFB, Haimberger L, Parker DE (2008) Assessing bias and uncertainty in the HadAT adjusted radiosonde climate record. J Climate 21:817–832

    Article  Google Scholar 

  • McCormack JP, Hood LL, Nagatani R, Miller AJ, Planet WG, Peters RD (1997) Approximate separation of volcanic and 11-year signals in the SBUV-SBUV/2 total ozone record over the 1979–1995 period. Geophys Res Lett 101:20933–20944

    Google Scholar 

  • McCormack JP, Miller AJ, Nagatani R, Fortuin JPF (1998) Interannual variability in the spatial distribution of extratropical total ozone. Geophys Res Lett 25(12):2153–2156

    Article  Google Scholar 

  • McFarlane GA, King JR, Beamish RJ (2000) Have there been recent changes in climate? Ask the fish. Prog Oceanogr 47:147–169

    Article  Google Scholar 

  • McGowan JA, Cayan DR, Dorman LR (1998) Climate–ocean variability and ecosystem response in the Northeast Pacific. Science 281:210–217. doi:10.1126/science.281.5374.210

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31:L18301. doi:10.1029/2004GL020727

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2009) A lagged warm event-like response to peaks in solar forcing in the Pacific region. J Climate 22:3647–3660

    Article  Google Scholar 

  • Meehl GA, Hurrell JW, van Loon H (1998) A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus 50A:442–450

    Google Scholar 

  • Meehl GA, Arblaster JM, Branstator G, van Loon H (2008) A coupled air–sea response mechanism to solar forcing in the Pacific region. J Climate 21:2883–2897

    Article  Google Scholar 

  • Meehl GA, Hu A, Santer BD (2009a) The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Climate 22:780–792

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Sassi F, Matthes K, van Loon H (2009b) Additive mechanisms amplify the Pacific climate system response to solar forcing. Science 325:1114–1118

    Article  Google Scholar 

  • Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26:855–858

    Article  Google Scholar 

  • Minobe S, Mantua N (1999) Interdecadal modulation of interannual atmospheric and oceanic variability over the North Pacific. Prog Oceanogr 43:163–192

    Article  Google Scholar 

  • Mo KC, Wang XL, Kistler R, Kanamitsu M, Kalnay E (1995) Impact of satellite data on the CDAS-reanalysis system. Mon Weather Rev 123:124–139

    Article  Google Scholar 

  • Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the North Pacific during the recent decades. Bull Am Meteorol Soc 78:2215–2225

    Article  Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and is relationship to the Northern Hemisphere circulation. J Meteorol Soc Japan 67:375–383

    Google Scholar 

  • Overland J, Rodionov S, Minobe S, Bond N (2008) North Pacific regime shifts: definitions, issues and recent transitions. Prog Oceanogr 77:92–102

    Article  Google Scholar 

  • Pawson S, Fiorino M (1999) A comparison of reanalyses in the tropical stratosphere. Part 3: inclusion of the pre-satellite data era. Clim Dyn 15:241–250. doi:10.1007/s003820050279

    Article  Google Scholar 

  • Powell A, Xu J (2010) Comparisons of temperature response to solar forcing in the pre- and post periods of satellite data assimilation. Int J Climatol. doi:10.1002/joc.2239 (in press)

  • Power SB, Casey T, Folland C, Colman A, Mehta V (1999) Decadal modulation of the impact of ENSO on Australia. Climate Dyn 15:319–324

    Article  Google Scholar 

  • Rind D, Lean J, Lerner J, Lonergan P, Leboissitier A (2008) Exploring the stratospheric/tropospheric response to solar forcing. J Geophys Res 113:D24103. doi:10.1029/2008JD010114

    Article  Google Scholar 

  • Sturaro G (2003) A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite date. Climate Dyn 21:309–316

    Article  Google Scholar 

  • Thorne PW, Parker DE, Tett S, Jones P, McCarthy M, Coleman H, Brohan P (2005) Revisiting radiosonde upper-air temperatures from 1958 to 2002. J Geophys Res 110:D18105. doi:10.1029/2004JD005753

    Article  Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:988–993

    Article  Google Scholar 

  • Trenberth KE, Hurrel JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Tung KK, Camp CD (2008) Solar cycle warming at the Earth’s surface in NCEP and ERA-40 data: a linear discriminant analysis. J Geophys Res 113:D05114. doi:10.1029/2007JD009164

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2691–3012

    Article  Google Scholar 

  • van Loon H, Labitzke K (2000) The influence of the 11-year solar cycle on the stratosphere below 30 km: a review. Space Sci Rev 94:259–278

    Article  Google Scholar 

  • van Loon H, Shea DJ (1999) A probable signal of the 11-year solar cycle in the troposphere of the Northern Hemisphere. Geophys Res Lett 26:2893–2896. doi:10.1029/1999GL900596

    Article  Google Scholar 

  • van Loon H, Meehl GA, Arblaster JM (2004) A decadal solar effect in the tropics in July–August. J Atmos Sol Terr Phys 66:1767–1778. doi:10.1016/j.jastp.2004.06.003

    Article  Google Scholar 

  • van Loon H, Meehl GA, Shea DJ (2007) Coupled air–sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:D02108. doi:10.1029/2006JD007378

    Article  Google Scholar 

  • Vinnikov KY, Groisman PY, Lugina KM (1990) Empirical data on contemporary climate change (temperature and precipitation). J Climate 3:662–677

    Article  Google Scholar 

  • Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Climate 8:267–285

    Article  Google Scholar 

  • White WB, Liu Z (2008) Non-linear alignment of El Nino to the 11-yr solar cycle. Geophys Res Lett 35:L19607. doi:10.1029/2008GL034831

    Article  Google Scholar 

  • White WB, Lean J, Cayan DR, Dettinger MD (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102:3255–3266

    Article  Google Scholar 

  • Wu R, Kinter JL (2005) Discrepancy of interdecadal changes in the Asian Region among the NCEP–NCAR reanalysis, objective analyses, and observations. J Climate 18:3048–3067

    Article  Google Scholar 

  • Wu R, Xie S-P (2003) On equatorial Pacific surface wind changes around 1977: NCEP–NCAR reanalysis versus COADS observation. J Climate 16:167–173

    Article  Google Scholar 

  • Zhang Y, Wallace J, Battisti D (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgments

The NCEP/NCAR monthly reanalysis data were obtained from NOAA/CDC web site, ERA-40 reanalysis data were obtained from the ECMWF web site and solar radio irradiance at F10.7 cm wavelength flux from the NOAA/NGDC web site. The authors would like to thank these agencies for the data providing. We also thank two anonymous reviewers for their valuable comments and suggestions.

This work was supported by the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS), and Center for Satellite Applications and Research (STAR). The views, opinions, and findings contained in this publication are those of the authors and should not be considered an official NOAA or U.S. Government position, policy, or decision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfred M. Powell Jr. or Jianjun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, A.M., Xu, J. A new assessment of the mid-1970s abrupt atmospheric temperature change in the NCEP/NCAR reanalysis and associated solar forcing implications. Theor Appl Climatol 104, 443–458 (2011). https://doi.org/10.1007/s00704-010-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0344-1

Keywords