Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving upper bounds for the clique number by non-valid inequalities

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The Lovász and Lovász-Schrijver bounds are well known upper bounds for the clique number of a graph, based on the solution of semidefinite programming problems. Both bounds can be seen as obtained through a relaxation of a completely positive formulation of the maximum clique problem. In this paper we propose to improve these bounds by adding inequalities based on independent sets, which may be non-valid, in the sense that they may be violated by optimal solutions of the completely positive formulation. Some computational experiments have been performed over different classes of graphs and the results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18, 525–547 (2012)

    Article  Google Scholar 

  2. Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bomze, I.M., Duer, M., de Klerk, E., Roos, C., Quist, A., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  4. Bomze, I.M., Frommlet, F., Locatelli, M.: Copositivity cuts for improving SDP bounds on the clique number. Math. Program. 124, 13–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bomze, I.M., Frommlet, F., Locatelli, M.: Gap, cosum, and product properties of the \(\theta ^{\prime }\) bound on the clique number. Optimization 59, 1041–1051 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borchers, B.: CSDP, AC library for semidefinite programming. Optim. Methods Softw. 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  7. Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Math. Program. 137, 343–370 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dong, H., Anstreicher, K.M.: Separating doubly nonnegative and completely positive matrices. Math. Program. 137, 131–153 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dukanović, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. B 109, 345–365 (2007)

    Article  MATH  Google Scholar 

  11. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: An application of the Lovász Schrijver \(M(K, K)\) operator to the stable set problem. Math. Program. 120, 381–401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giandomenico, M., Rossi, F., Smriglio, S.: Strong lift-and-project cutting planes for the stable set problem. Math. Program. 141, 165–192 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grosso, A., Locatelli, M., Della Croce, F.: Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. J. Heuristics 10, 135–152 (2004)

    Article  Google Scholar 

  14. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14, 587–612 (2008)

    Article  Google Scholar 

  15. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the maximum clique. Discret. Appl. Math. 145, 117–125 (2004)

    Article  MATH  Google Scholar 

  16. Hoffman, K.L., Padberg, M.W.: Solving air-crew scheduling problems by branch-and-cut. Manag. Sci. 39, 657–682 (1993)

    Article  MATH  Google Scholar 

  17. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum clique problem. Inf. Process. Lett. 95, 503–511 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0–1 programming. In: Aardal, K., Gerards, A.H.M. (eds.) Lecture Notes in Computer Science, vol. 2081, pp. 293–303 (2001)

  20. Loefberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  21. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT-25, 1–7 (1979)

    Google Scholar 

  22. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. McEliece, R.J., Rodemich, E.R., Rumsey, H.C.: The Lovász’ bound and some generalizations. J. Comb. Inf. Syst. Sci. 3, 134–152 (1978)

    MATH  MathSciNet  Google Scholar 

  24. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peña, J., Vera, J., Zuluaga, L.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18, 87–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif. Intell. Res. 25, 159–185 (2006)

    MATH  Google Scholar 

  27. Schrijver, A.: A comparison of the Delsarte and Lovasz bounds. IEEE Trans. Inform. Theory 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discret. Math. 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2, 101–112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by copositive projection. Math. Program. 143, 211–228 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Locatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, M. Improving upper bounds for the clique number by non-valid inequalities. Math. Program. 150, 511–525 (2015). https://doi.org/10.1007/s10107-014-0771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0771-3

Keywords

Mathematics Subject Classification