Abstract
Let Gi be closed Lie groups of U(n), Ωi be bounded Gi-invariant domains in ℂn which contains 0, and O(ℂn)Gi = ℂ, for i = 1, 2. It is known that if f: Ω1 →} Ω2 is a proper holomorphic mapping, and f−1{0} = {0}, then f is a polynomial mapping. In this paper, we provide an upper bound for the degree of such a polynomial mapping using the multiplicity of f.
Similar content being viewed by others
References
Bell, S.: Proper holomorphic mappings and the Bergman projection. Duke Math. J., 48(1), 167–175 (1981)
Bell, S.: The Bergman kernel function and proper holomorphic mappings. Trans. Amer. Math. Soc., 270, 685–691 (1982)
Cartan, H.: Les fonctions de deux variables complexes et le problème de repr´esentation analytique. J. de Math. Pures et Appl., 96, 1–114 (1931)
Deng, F. S., Rong, F.: On biholomorphisms between bounded quasi-Reinhardt domains. Annali di Matematica, 195(3), 835–843 (2016)
Dinh, T. C., Sibony, N.: Equidistribution speed for endomorphisms of projective spaces. Math. Ann., 347(3), 613–626 (2010)
Heinzner, P.: On the automorphisms of special domains in ℂn. Indiana Univ. Math. J., 41, 707–712 (1992)
Heinzner, P.: Geometric invariant theory on Stein spaces. Math. Ann., 289, 631–662 (1991)
Kaup, W.: Über das Randverhalten von Holomorphen Automorphismen beschränkter Gebiete. Manuscripta Math., 3, 250–270 (1970)
Narasimhan, R.: Several Complex Variables, University of Chicago Press, Chicago, 1971
Ning, J. F., Zhang, H. P., Zhou, X. Y.: Proper holomorphic mappings between invariant domains in ℂn. Trans. Amer. Math. Soc., 369, 517–536 (2017)
Ning, J. F., Zhou, X. Y.: The degree of biholomorphic mappings between special domains in ℂn preserving 0. Sci. China Math., 60, 1077–1082 (2017)
Rong, F.: On automorphisms of quasi-circular domains fixing the origin. Bull. Sci. Math., 140, 92–98 (2016)
Snow, D.: Reductive group action on Stein spaces. Math. Ann., 259, 79–97 (1982)
Yamamori, A.: Automorphisms of normal quasi-circular domains. Bull. Sci. Math., 138(3), 406–415 (2014)
Yamamori, A.: The linearity of origin-preserving automorphisms of quasi-circular domains. J. Math. Anal. Appl., 426(1), 612–623 (2015)
Yamamori, A., Zhang, L. Y.: On origin-preserving automorphisms of quasi-circular domains. J. Geom. Anal., 28(2), 1–13 (2017)
Zhou, X. Y.: On orbit connectedness, orbit convexity, and envelopes of holomorphy. Izvestiya Russian Akad. Nauk, Series Math., 58(2), 196–205 (1994)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supported by National Natural Science Foundation of China (Grant Nos. 11801572, 11688101)
Rights and permissions
About this article
Cite this article
Ning, J.F., Zhou, X.Y. The Degree of Proper Holomorphic Mappings Between Special Domains in ℂn. Acta. Math. Sin.-English Ser. 36, 395–400 (2020). https://doi.org/10.1007/s10114-020-9299-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10114-020-9299-z