Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lipschitz Functions Have L p -Stable Persistence

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We prove two stability results for Lipschitz functions on triangulable, compact metric spaces and consider applications of both to problems in systems biology. Given two functions, the first result is formulated in terms of the Wasserstein distance between their persistence diagrams and the second in terms of their total persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.N. Benfey, B. Scheres, Root development, J. Curr. Biol. 10, R813–815 (2000).

    Article  Google Scholar 

  2. S.M. Brady, D.A. Orlando, J.-Y. Lee, J.Y. Wang, J. Koch, J.R. Dinneny, D. Mace, U. Ohler, P.N. Benfey, A high-resolution root spatiotemporal map reveals dominant expression patterns, Science 318, 801–806 (2007).

    Article  Google Scholar 

  3. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37, 103–120 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Extending persistence using Poincaré and Lefschetz duality, Found. Comput. Math. 9, 79–103 (2009) and 133–134.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.-L. Dequéant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquié, A complex oscillating network of signaling genes underlies the mouse segmentation clock, Science 314, 1595–1598 (2006).

    Article  Google Scholar 

  6. M.-L. Dequéant, S. Ahnert, H. Edelsbrunner, T.M.A. Fink, E.F. Glynn, G. Hattem, A. Kudlicki, Y. Mileyko, J. Morton, A.R. Mushegian, L. Pachter, M. Rowicka, A. Shiu, B. Sturmfels, O. Pourquié, Comparison of pattern detection methods in microarray time series of the segmentation clock, PLoS ONE 3, e2856 (2008). doi:10.1371/journal.pone.0002856.

    Article  Google Scholar 

  7. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28, 511–533 (2002).

    MATH  MathSciNet  Google Scholar 

  8. H. Edelsbrunner, D. Morozov, V. Pascucci, Persistence-sensitive simplification of functions on 2-manifolds, in Proc. 22nd Ann. Sympos. Comput. Geom. (2006), pp. 127–134.

  9. P. Frosini, C. Landi, Size theory as a topological tool for computer vision, Pattern Recognit. Image Anal. 9, 596–603 (1999).

    Google Scholar 

  10. L.V. Kantorovich, On the translocation of masses, C.R. (Dokl.) Acad. Sci. URSS 37, 199–226 (1942).

    Google Scholar 

  11. G. Monge, Mémoire sur la théorie des déblais et des remblais, in Histoire de l’Académie Royale des Sciences de Paris (1781), pp. 666–704.

  12. J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Redwood City, 1984).

    MATH  Google Scholar 

  13. O. Pourquié, The segmentation clock: converting embryonic time into spatial pattern, Science 301, 328–330 (2003).

    Article  Google Scholar 

  14. L.N. Wasserstein, Markov processes over denumerable products of spaces describing large systems of automata, Probl. Inf. Transm. 5, 47–52 (1969).

    Google Scholar 

  15. A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33, 249–274 (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Edelsbrunner.

Additional information

Communicated By Peter Olver.

This research is partially supported by the Defense Advanced Research Projects Agency (DARPA) under grants HR0011-05-1-0007 and HR0011-05-1-0057 and by CNRS under grant PICS-3416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Steiner, D., Edelsbrunner, H., Harer, J. et al. Lipschitz Functions Have L p -Stable Persistence. Found Comput Math 10, 127–139 (2010). https://doi.org/10.1007/s10208-010-9060-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9060-6

Keywords

Mathematics Subject Classification (2000)