Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A cost minimization heuristic for the pooling problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Pooling and blending are important operations in petrochemical and agricultural industries with high potential economic value. For instance, transporting the natural gas from the production sources to the exit terminals is a complex process where the end products in the terminals consist of a blend of natural gas from different sources. Constraints of particular importance, are restrictions regarding gas quality at terminals and the actual quality of the gas produced at sources. In many situations, intermediate pooling tanks are necessary, implying that an otherwise linear network flow model is transformed into a strongly NP-hard problem recognized as the pooling problem. In this paper, we propose an algorithm for computing good feasible solutions to the pooling problem. In particular, we give a greedy construction method that in each iteration solves a pooling problem instance with only one terminal. Computational experiments demonstrate the merit of the method, which, in the hardest instances, give considerably better results than commercially available local and global optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

References

  • Adhya, N., Tawarmalani, M., & Sahinidis, N. V. (1999). A Lagrangian approach to the pooling problem. Industrial & Engineering Chemistry Research, 38(5), 1956–1972.

    Article  Google Scholar 

  • Alfaki, M., & Haugland, D. (2011). Comparison of discrete and continuous models for the pooling problem. In A. Caprara & S. Kontogiannis (Eds.), OpenAccess series in informatics (OASIcs): Vol. 20. 11th workshop on algorithmic approaches for transportation modelling, optimization, and systems (pp. 112–121). Wadern: Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  • Alfaki, M., & Haugland, D. (2013a). A multi-commodity flow formulation for the generalized pooling problem. Journal of Global Optimization, 56(3), 917–937. doi:10.1007/s10898-012-9890-7.

    Article  Google Scholar 

  • Alfaki, M., & Haugland, D. (2013b). Strong formulations for the pooling problem. Journal of Global Optimization, 56(3), 897–916. doi:10.1007/s10898-012-9875-6.

    Article  Google Scholar 

  • Almutairi, H., & Elhedhli, S. (2009). A new Lagrangian approach to the pooling problem. Journal of Global Optimization, 45(2), 237–257.

    Article  Google Scholar 

  • Amos, F., Rönnqvist, M., & Gill, G. (1997). Modelling the pooling problem at the New Zealand Refining Company. Journal of the Operational Research Society, 48(8), 767–778.

    Article  Google Scholar 

  • Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., & Mladenović, N. (2004). Pooling problem: alternate formulations and solution methods. Management Science, 50(6), 761–776.

    Article  Google Scholar 

  • Bagajewicz, M. (2000). A review of recent design procedures for water networks in refineries and process plants. Computers & Chemical Engineering, 24(9–10), 2093–2113.

    Article  Google Scholar 

  • Baker, T. E., & Lasdon, L. S. (1985). Successive linear programming at Exxon. Management Science, 31(3), 264–274.

    Article  Google Scholar 

  • Ben-Tal, A., Eiger, G., & Gershovitz, V. (1994). Global minimization by reducing the duality gap. Mathematical Programming, 63(2), 193–212.

    Article  Google Scholar 

  • DeWitt, C. W., Lasdon, L. S., Waren, A. D., Brenner, D. A., & Melhem, S. A. (1989). OMEGA: an improved gasoline blending system for Texaco. Interfaces, 19(1), 85–101.

    Article  Google Scholar 

  • Floudas, C. A., & Aggarwal, A. (1990). A decomposition strategy for global optimization search in the pooling problem. Operations Research Journal on Computing, 2(3), 225–235.

    Google Scholar 

  • Foulds, L. R., Haugland, D., & Jörnsten, K. (1992). A bilinear approach to the pooling problem. Optimization, 24(1), 165–180.

    Article  Google Scholar 

  • Gounaris, C. E., Misener, R., & Floudas, C. A. (2009). Computational comparison of piecewise–linear relaxation for pooling problems. Industrial & Engineering Chemistry Research, 48(12), 5742–5766.

    Article  Google Scholar 

  • Griffith, R. E., & Stewart, R. A. (1961). A nonlinear programming technique for the optimization of continuous processing systems. Management Science, 7, 379–392.

    Article  Google Scholar 

  • Haverly, C. A. (1978). Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bulletin, 25, 19–28.

    Article  Google Scholar 

  • Haverly, C. A. (1979). Behavior of recursion model-more studies. ACM SIGMAP Bulletin, 26, 22–28.

    Article  Google Scholar 

  • Li, X., Armagan, E., Tomasgard, A., & Barton, P. I. (2011). Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE Journal, 57(8), 2120–2135.

    Article  Google Scholar 

  • Liberti, L., & Pantelides, C. C. (2006). An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. Journal of Global Optimization, 36(2), 161–189.

    Article  Google Scholar 

  • Main, R. A. (1993). Large recursion models: practical aspects of recursion techniques. In T. A. Ciriani & R. C. Leachman (Eds.), Optimization in industry: mathematical programming and modeling techniques in practice (pp. 241–249). New York: Wiley.

    Google Scholar 

  • McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Mathematical Programming, 10(1), 147–175.

    Article  Google Scholar 

  • Meyer, C. A., & Floudas, C. A. (2006). Global optimization of a combinatorially complex generalized pooling problem. AIChE Journal, 52(3), 1027–1037.

    Article  Google Scholar 

  • Misener, R., & Floudas, C. A. (2010). Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Industrial & Engineering Chemistry Research, 49(11), 5424–5438.

    Article  Google Scholar 

  • Murtagh, B. A., & Saunders, M. A. (1982). A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints. Mathematical Programming Study Constrained Optimization, 16, 84–117.

    Article  Google Scholar 

  • Palacios-Gomez, F., Lasdon, L. S., & Engquist, M. (1982). Nonlinear optimization by successive linear programming. Management Science, 28(10), 1106–1120.

    Article  Google Scholar 

  • Pham, V., Laird, C., & El-Halwagi, M. (2009). Convex hull discretization approach to the global optimization of pooling problems. Industrial & Engineering Chemistry Research, 48(4), 1973–1979.

    Article  Google Scholar 

  • Quesada, I., & Grossmann, I. E. (1995). Global optimization of bilinear process networks with multi-component flows. Computers & Chemical Engineering, 19(12), 1219–1242.

    Article  Google Scholar 

  • Rigby, B., Lasdon, L. S., & Waren, A. D. (1995). The evolution of Texaco’s blending systems: from OMEGA to StarBlend. Interfaces, 25(5), 4–83.

    Article  Google Scholar 

  • Rømo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B. H., & Pedersen, B. (2009). Optimizing the Norwegian natural gas production and transport. Interfaces, 39(1), 46–56.

    Article  Google Scholar 

  • Sarker, R. A., & Gunn, E. A. (1997). A simple SLP algorithm for solving a class of nonlinear programs. European Journal of Operational Research, 101(1), 140–154.

    Article  Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1999). A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Simon, J. D., & Azma, H. M. (1983). Exxon experience with large scale linear and nonlinear programming applications. Computers & Chemical Engineering, 7(5), 605–614.

    Article  Google Scholar 

  • Tawarmalani, M., & Sahinidis, N. V. (2002). Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Tawarmalani, M., & Sahinidis, N. V. (2005). A polyhedral branch-and-cut approach to global optimization. Mathematical Programming, 103(2), 225–249.

    Article  Google Scholar 

  • Tomasgard, A., Rømo, F., Fodstad, M., & Midthun, K. (2007). Optimization models for the natural gas value chain. In G. Hasle, K. A. Lie, & E. Quak (Eds.), Geometric modelling, numerical simulation, and optimization: applied mathematics at SINTEF (pp. 521–558). Berlin: Springer.

    Chapter  Google Scholar 

  • Visweswaran, V., & Floudas, C. A. (1990). A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems. Computers & Chemical Engineering, 14(12), 1419–1434.

    Article  Google Scholar 

  • Zhang, J. H., Kim, N. H., & Lasdon, L. (1985). An improved successive linear programming algorithm. Management Science, 31(10), 1312–1331.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Norwegian Research Council, Gassco, and Statoil under contract 175967/S30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Alfaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfaki, M., Haugland, D. A cost minimization heuristic for the pooling problem. Ann Oper Res 222, 73–87 (2014). https://doi.org/10.1007/s10479-013-1433-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1433-1

Keywords