Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cu2O/SBA-3 Possess Intrinsic High Protease-Like Activity for Efficient Hydrolysis of Protein Under Physiological Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Developing efficient artificial proteases still remains a great challenge due to the high stability of peptide bonds. Nanozymes have attracted great attention for their high stability, low cost and inherent physicochemical properties, providing new opportunities to break through natural enzyme inherent limitations, but the intrinsic mimic proteases properties of nanomaterials were seldom explored. Herein, we describe for the first time that SBA-3 supported Cu2O (Cu2O/SBA-3) exhibited excellent protease-like activity to hydrolysis of bovine serum albumin (BSA) and casein under neutral conditions, which is even superior to natural proteases (trypsin) and most of the other protease mimics under identical conditions. It exhibited surprisingly high catalytic activity and possessed good stability. As the first example of protease mimics consist of metallic compounds and mesoporous materials, Cu2O/SBA-3 has many advantages, such as easy preparation and separation, high activity and stability, mild reaction conditions, which makes this catalytic system have multiple of potential applications in biological systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim HM, Jang B, Cheon YE, Suh MP, Suh J (2009) Proteolytic activity of Co (III) complex of 1-oxa-4, 7, 10-triazacyclododecane: a new catalytic center for peptide-cleavage agents. J Biol Inorg Chem 14(1):151–157

    Article  CAS  PubMed  Google Scholar 

  2. Yashiro M, Kawakami Y, Taya JI, Arai S, Fujii Y (2009) Zn (II) complex for selective and rapid scission of protein backbone. Chem Commun 12:1544–1546

    Article  Google Scholar 

  3. Suh J, Moon SJ (2001) Artificial peptidase with an active site comprising a Cu (II) center and a proximal guanidinium ion. A carboxypeptidase A analogue. Inorg Chem 40(19):4890–4895

    Article  CAS  PubMed  Google Scholar 

  4. Yoo SH, Lee BJ, Kim H, Suh J (2005) Artificial metalloprotease with active site comprising aldehyde group and Cu (II) cyclen complex. J Am Chem Soc 127(26):9593–9602

    Article  CAS  PubMed  Google Scholar 

  5. Takarada T, Yashiro M, Komiyama M (2000) Catalytic hydrolysis of peptides by cerium (IV). Chem Eur J 6(21):3906–3913

    Article  CAS  PubMed  Google Scholar 

  6. Miskevich F, Davis A, Leeprapaiwong P, Giganti V, Kostić NM, Angel L (2011) Metal complexes as artificial proteases in proteomics: A palladium (II) complex cleaves various proteins in solutions containing detergents. J Inorg Biochem 105(5):675–683

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  PubMed  Google Scholar 

  9. Jiao L, Xu W, Yan H, Wu Y, Liu C, Du D, Lin Y, Zhu C (2019) Fe-N-C single-atomnanozymes for the intracellularhydrogenperoxide detection. Anal Chem 91(18):11994–11999

    Article  CAS  PubMed  Google Scholar 

  10. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Gao XJ, Qin L, Wang C, Song L, Zhou YN, Zhu GY, Cao W, Lin SC, Zhou LQ, Wang K, Zhang HG, Jin Z, Wang P, Gao X, Wei H (2019) eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun 10:704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi Q, Song Y, Zhu C, Yang H, Du D, Lin Y (2015) Mesoporous Pt nanotubes as a novel sensing platform for sensitive detection of intracellular hydrogen peroxide. ACS Appl Mater Interfaces 7(43):24288–24295

    Article  CAS  PubMed  Google Scholar 

  13. Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, Tang D, Xia X (2017) Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17(9):5572–5579

    Article  CAS  PubMed  Google Scholar 

  14. Chen D, Li B, Jiang L, Duan D, Li Y, Wang J, He J, Zeng Y (2015) Highly efficient colorimetric detection of cancer cells utilizing Fe-MIL-101 with intrinsic peroxidase-like catalytic activity over a broad pH range. RSC Adv 5(119):97910–97917

    Article  CAS  Google Scholar 

  15. Salazar Marcano DE, Savić ND, Abdelhameed SA, De Azambuja F, Parac-Vogt TN (2023) Exploring the reactivity of polyoxometalates toward proteins: From interactions to mechanistic insights. JACS Au 3(4):978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdelhameed SA, Ly HGT, Moons J, De Azambuja F, Proost P, Parac- Vogt TN (2021) Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce (iv)-substituted polyoxometalates as artificial proteases. Chem Sci 12(31):10655–10663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li B, Chen D, Wang J, Yan Z, Jiang L, Duan D, He J, Luo Z, Zhang J, Yuan F (2014) MOFzyme: Intrinsic protease-like activity of Cu-MOF. Sci Rep 4(1):1–8

    Google Scholar 

  18. Azambuja FD, Moons J, Parac-Vogt TN (2021) The dawn of metal-oxo clusters as artificial proteases: From discovery to the present and beyond. Acc Chem Res 54(7):1673–1684

    Article  CAS  PubMed  Google Scholar 

  19. Simms C, Mullaliu A, Swinnen S, De Azambuja F, Parac-Vogt TN (2023) MOF catalysis meets biochemistry: molecular insights from the hydrolytic activity of MOFs towards biomolecules. Mol Syst Des Eng 8(3):270–288

    Article  CAS  Google Scholar 

  20. Moons J, de Azambuja F, Mihailovic J, Kozma K, Smiljanic K, Amiri M, Velickovic TC, Nyman M, Parac-Vogt TN (2020) Discrete Hf18 metal- oxo cluster as a heterogeneous nanozyme for site-specific proteolysis. Angew Chem Int Ed 59(23):9094–9101

    Article  CAS  Google Scholar 

  21. Loosen A, de Azambuja F, Parac-Vogt TN (2022) Which factors govern the adsorption of peptides to Zr (IV)-based metal–organic frameworks? Mater Adv 3(5):2475–2487

    Article  CAS  Google Scholar 

  22. Xu J, Ji N, Guo M, Wang Y, Xu X (2023) CuCoO2 nanoparticles as a nanoprotease for selective proteolysis with high efficiency at room temperature. Angew Chem 135(31):e202304554

    Article  Google Scholar 

  23. Li B, Chen D, Nie M, Wang J, Li Y, Yang Y (2018) Carbon Dots/Cu2O Composite with Intrinsic High Protease-Like Activity for Hydrolysis of Proteins under Physiological Conditions. Part Part Syst Charact 35(11):1800277

    Article  Google Scholar 

  24. Chen D, Jiang L, Lei T, Xiao G, Wang Y, Zuo X, Li B, Li L, Wang J (2022) Magnetic CuFe2O4 with intrinsic protease-like activity inhibited cancer cell proliferation and migration through mediating intracellular proteins. Biomater Biosyst 5:100038

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao R, Xu L, Sun M, Xu M, Hao C, Guo X, Colombari FM, Zheng X, Král P, de Moura AF, Xu C, Yang J, Kotov NA, Kuang H (2022) Site- selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat Catal 5(8):694–707

    Article  CAS  Google Scholar 

  26. Zhang F, Chen C, Xiao WM, Xu L, Zhang N (2012) CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3 (BTC)2 metal-organic framework precursor for preferential CO oxidation. Catal Commun 26:25–29

    Article  Google Scholar 

  27. Lin Y, Li Z, Chen Z, Ren J, Qu X (2013) Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 34(11):2600–2610

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Yang X, Yang J, Jiang Y, He N (2015) Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal Chim Acta 862:53–63

    Article  CAS  PubMed  Google Scholar 

  29. Aghayan M, Mahmoudi A, Sazegar MR, Hajiagha NG, Nazari K (2018) Enzymatic activity of Fe-grafted mesoporous silica nanoparticles: an insight into H2O2 and glucose detection. New J Chem 42(19):16060–16068

    Article  CAS  Google Scholar 

  30. Florek-Milewska J, Decyk P, Ziolek M (2011) Catalytic properties of Cu/SBA-3 in oxidative dehydrogenation of methanol-The effect of the support composition. Appl Catal A 393(1–2):215–224

    Article  CAS  Google Scholar 

  31. Janiszewska E (2014) One-pot hydrothermal synthesis of Al-containing SBA-3 mesoporous materials. Microporous Mesoporous Mater 193:77–84

    Article  CAS  Google Scholar 

  32. Qiu S, Zhou H, Shen Z, Hao L, Chen H, Zhou X (2020) Synthesis, characterization, and comparison of antibacterial effects and elucidating the mechanism of ZnO, CuO and CuZnO nanoparticles supported on mesoporous silica SBA-3. RSC Adv 10(5):2767–2785

    Article  PubMed  PubMed Central  Google Scholar 

  33. Anunziata OA, Beltramone AR, Martínez ML, Belon LL (2007) Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J Colloid Interface Sci 315(1):184–190

    Article  CAS  PubMed  Google Scholar 

  34. Huo Q, Margolese DI, Stucky GD (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater 8:1147–1160

    Article  CAS  Google Scholar 

  35. Anbia M, Hariri SA (2010) Removal of methylene blue from aqueous solution using nanoporous SBA-3. Desalination 621:61–66

    Article  Google Scholar 

  36. Ponte MV, Rivoira LP, Cussa J, Martínez ML, Beltramone AR, Anunziata OA (2016) Optimization of the synthesis of SBA-3 mesoporous materials by experimental design. Microporous Mesoporous Mater 227:9–15

    Article  CAS  Google Scholar 

  37. Prakash I, Muralidharan P, Nallamuthu N, Venkateswarlu M, Satyanarayan N (2007) Preparation and characterization of nanocrystallite size cuprous oxide. Mater Res Bull 42:1619–1624

    Article  CAS  Google Scholar 

  38. Zhang YZ, Tang JY, Wang GL, Zhang M, Hu XY (2006) Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J Cryst Growth 294(2):278–282

    Article  CAS  Google Scholar 

  39. Suh J, Oh S (2000) Remarkable proteolytic activity of imidazoles attached to cross-linked polystyrene. J Org Chem 65(22):7534–7540

    Article  CAS  PubMed  Google Scholar 

  40. Jang SW, Suh J (2008) Proteolytic activity of Cu (II) complex of 1-Oxa-4, 7, 10-triazacyclododecane. Org Lett 10(3):481–484

    Article  CAS  PubMed  Google Scholar 

  41. Kim MG, Yoo SH, Chei WS, Lee TY, Kim HM, Suh J (2010) Soluble artificial metalloproteases with broad substrate selectivity, high reactivity, and high thermal and chemical stabilities. J Biol Inorg Chem 15(7):1023–1031

    Article  CAS  PubMed  Google Scholar 

  42. Suh J, Hah SS (1998) Organic artificial proteinase with active site comprising three salicylate residues. J Am Chem Soc 120(39):10088–10093

    Article  CAS  Google Scholar 

  43. Dalgleish DG (2011) On the structural models of bovine casein micelles-review and possible improvements. Soft Matter 7(6):2265–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (22062026). The authors also thank the Yunling Scholar (K264202012420), Yunnan Applied Basic Research Projects (202401AT070432), Yunnan Fundamental Research Projects(202401BF070001-028), project from Department of Ecology and Environment of Yunnan Province (202305AM340008),R & D Project (2022 No4) from Water Resources Department of Yunnan Province, project from Scientific and Technological Project of Yunnan Precious Metals Laboratory, Institute of Frontier Technologies in Water Treatment, and Key Laboratory of Advanced Materials for Wastewater Treatment of Kunming for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Li or Jiaqiang Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Xiao, G., Tang, J. et al. Cu2O/SBA-3 Possess Intrinsic High Protease-Like Activity for Efficient Hydrolysis of Protein Under Physiological Conditions. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04747-2

Keywords