Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Broadband Terahertz Spectroscopy and Weak Interactions of Adenosine with Vibrational Mode Analysis

  • Research
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Adenosine, as a basic nucleoside element and neurotransmitter, plays a variety of roles in regulating human biological functions. Its conformational state and preference are significant for the biological activities. In this work, terahertz (THz) fingerprint spectrum of adenosine is obtained by a broadband air-plasma THz time-domain spectroscopy system in the range of 0.5 ~ 13 THz. The density function theory (DFT) calculation is performed to analyze the vibrational properties of adenosine. The intra- and intermolecular weak interactions related to the vibrational modes are revealed and visualized by reduced density gradient (RDG). The results show that the different absorption peaks in the THz spectrum correspond to molecular specific vibration. The intra- and intermolecular vibrations of adenosine exhibit tight coupling. Hydrogen bonds make important contributions to the vibrations in the THz band. The deformation of the purine ring and different vibrations of the ribose group directly influence the structural changes of the nucleoside and intermolecular recognitions. This research will help to understand the conformational preferences of adenosine and the resonant response to THz electromagnetic waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. J. Layland, D. Carrick, M. Lee, K. Oldroyd, C. Berry, Adenosine: physiology, pharmacology, and clinical applications. JACC: Cardiovascular Interventions, 7(2014) 581-591, https://doi.org/10.1016/j.jcin.2014.02.009.

    Article  Google Scholar 

  2. A. M. Soliman, A. M. Fathalla, and A. A. Moustafa, Adenosine role in brain functions: pathophysiological influence on Parkinson’s disease and other brain disorders. Pharmacological Reports, 2018. 70(2018) 661-667, https://doi.org/10.1016/j.pharep.2018.02.003.

    Article  Google Scholar 

  3. B. B. Fredholm, Adenosine receptors as drug targets. Experimental cell research, 316(2010) 1284-1288, https://doi.org/10.1016/j.yexcr.2010.02.004.

    Article  Google Scholar 

  4. A. Glukhova, D. M. Thal, A. T. Nguyen, E. A. Vecchio, M. Jörg, P. J. Scammells, L. T. May, P. M. Sexton, A. Christopoulos, Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell, 168(2017) 867-877, https://doi.org/10.1016/j.cell.2017.01.042.

    Article  Google Scholar 

  5. J. Ren, J. B. Chaires, Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry, 38(2003) 16067-16075, https://doi.org/10.1016/S0162-0134(03)80543-3.

    Article  Google Scholar 

  6. T. F. Lai, R. E. Marsh, The crystal structure of adenosine. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(1972) 1982-1989, https://doi.org/10.1107/S0567740872005394.

    Article  Google Scholar 

  7. M. Mathlouthi, A. M. Seuvre, J. L. Koenig, FT-IR and laser-Raman spectra of adenine and adenosine. Carbohydrate research, 131(1984) 1-15, https://doi.org/10.1016/0008-6215(84)85398-7.

    Article  Google Scholar 

  8. A. Toyama, Y. Takino, H. Takeuchi, I. Harada. Ultraviolet resonance Raman spectra of ribosyl C (1′)-deuterated purine nucleosides: evidence of vibrational coupling between purine and ribose rings. Journal of the American Chemical Society, 115(1993) 11092-11098, https://doi.org/10.1021/ja00077a005.

    Article  Google Scholar 

  9. S. Lee, L. Lettress, A. Anderson, Mid-infrared study of deoxyadenosine at high pressures: Evidence of phase transitions. Journal of Biomolecular Structure and Dynamics, 24(2007) 579-588, https://doi.org/10.1080/07391102.2007.10507147.

    Article  Google Scholar 

  10. K. C. Martin, D. A. Pinnick, S. A. lee, A. Anderson, V. Mohan. Raman and infrared studies of nucleosides at high pressures: I. adenosine. Journal of Biomolecular Structure and Dynamics, 16(1999) 1159-1167, https://doi.org/10.1080/07391102.1999.10508324.

    Article  Google Scholar 

  11. T. J. Sanders, J. L. Allen, J. Horvat, R. A. Lewis. Terahertz response of DL-alanine: experiment and theory. Physical Chemistry Chemical Physics, 23(2021) 657-665, https://doi.org/10.1039/D0CP05432A.

    Article  Google Scholar 

  12. Z. Wu, Z. Zhu, C. Chang, J. Zhang, Y. Gong, M. Xu, S. Li, H. Zhao. Terahertz spectroscopy of enantiomeric and racemic pyroglutamic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225(2020) 117509, https://doi.org/10.1016/j.saa.2019.117509.

    Article  Google Scholar 

  13. B. M. Fischer, M. Walther, P. U. Jepsen, Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Physics in Medicine & Biology, 47(2002) 3807, https://doi.org/10.1088/0031-9155/47/21/319.

    Article  Google Scholar 

  14. Y. C. Shen, P. C. Upadhya, E. H. Linfield, A. G. Davies, Vibrational spectra of nucleosides studied using terahertz time-domain spectroscopy. Vibrational Spectroscopy, 35(2004) 111-114.

    Article  Google Scholar 

  15. J. I. Nishizawa, T. Sasaki, K. Suto, T. Tanabe, K. Saito, T. Yamada, T. Kimura, THz transmittance measurements of nucleobases and related molecules in the 0.4- to 5.8-THz region using a GaP THz wave generator. Optics communications, 246(2005) 229-239, https://doi.org/10.1016/j.optcom.2004.10.076.

    Article  Google Scholar 

  16. J. Shen, Z. Zhu, Z. Zhang, C. Guo. H. Zhao, Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247(2021) 119141, https://doi.org/10.1016/j.saa.2020.119141.

    Article  Google Scholar 

  17. Z. Zhu, J. Zhang, Y. Song, C. Chang, H. Zhao, Broadband terahertz signatures and vibrations of dopamine. Analyst, 145(2020) 6006-6013, https://doi.org/10.1039/D0AN00771D.

    Article  Google Scholar 

  18. X. Yang, Y. Shen, Z. Zhang, Broadband terahertz time-domain spectroscopy and fast FMCW imaging: principle and applications. Chinese Physics B, 29(2020), https://doi.org/10.1088/1674-1056/ab9296.

  19. G. Liu, The conjectures on physical mechanism of vertebrate nervous system. Chinese Science Bulletin, 63(2018) 3864-3865, https://doi.org/10.1360/N972018-01143.

    Article  Google Scholar 

  20. S. Romanenko, R. Begley, A. R. Harvey, L. Hool, V. P. Wallace, The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential. Journal of The Royal Society Interface, 14(2017) 20170585, https://doi.org/10.1098/rsif.2017.0585.

    Article  Google Scholar 

  21. B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, K. Rasmussen, DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 374(2010) 1214-1217, https://doi.org/10.1016/j.physleta.2009.12.077.

    Article  Google Scholar 

  22. K. Wu, C. Qi, Z. Zhu, C. Wang, B. Song, C. Chang, Terahertz wave accelerates DNA unwinding: A molecular dynamics simulation study. Journal of Physical Chemistry Letters, 11(2020) 7002-7008, https://doi.org/10.1021/acs.jpclett.0c01850.

    Article  Google Scholar 

  23. A. A. Greschner, X. Ropagnol, M. Kort, N. Zuberi, J. Perreault, L. Razzari, T. Ozaki, M. A. Gauthier, Room-temperature and selective triggering of supramolecular DNA assembly/disassembly by nonionizing radiation. Journal of the American Chemical Society, 141(2019) 3456-3469, https://doi.org/10.1021/jacs.8b10355.

    Article  Google Scholar 

  24. N. Y. Tan, M. T. Ruggiero, C. O. Tavra, T. Tian, A. D. Bond, T. M. Korter, D. F. Jimenez, J. A. Zeitler, Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy. Chemical Communications, 51(2015), 16037-16040, https://doi.org/10.1039/c5cc06455d.

    Article  Google Scholar 

  25. P. U. Jepsen, S. J. Clark, Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chemical Physics Letters, 442(2007) 275-280, https://doi.org/10.1016/j.cplett.2007.05.112.

    Article  Google Scholar 

  26. F. Zhang, O. Kambara, K. Tominaga, J. Nishizawa, T. Sasaki, H. Wang, M. Hayashi, Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region. RSC Adv., 4(2014) 269-278, https://doi.org/10.1039/c3ra44285c.

    Article  Google Scholar 

  27. X. Xie, J. Dai, X. C. Zhang, Coherent control of THz wave generation in ambient air. Physical Review Letters, 96(2006) 075005, https://doi.org/10.1103/PhysRevLett.96.075005.

    Article  Google Scholar 

  28. X. P. Fu, H. A. Aisa, M. Abdurahim, A. Yili, B. Tashkhodzhaev, Chemical composition of capparis spinosa fruit. Chemistry of Natural compounds, 43(2007) 181-183, https://doi.org/10.1007/s10600-007-0074-5.

    Article  Google Scholar 

  29. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Haasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220(2005) 567–570, https://doi.org/10.1524/zkri.220.5.567.65075.

  30. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. T. Yang, Revealing noncovalent interactions. Journal of the American Chemical Society, 132(2010) 6498, https://doi.org/10.1021/ja100936w.

    Article  Google Scholar 

  31. T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(2012) 580-592, https://doi.org/10.1002/jcc.22885.

    Article  Google Scholar 

  32. F. Zhang, K. Tominaga, M. Hayashi, H. W. Wang, Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory. In infrared, millimeter-wave, and terahertz technologies Iii, 9275 (2014) 92750D, https://doi.org/10.1117/12.2071528.

    Article  Google Scholar 

  33. F. Wang, X. Sun, J. Zan, M. Li, Y. Liu, J. Chen, Terahertz spectra and weak intermolecular interactions of nucleosides or nucleoside drugs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 265(2022) 120344, https://doi.org/10.1016/j.saa.2021.120344.

  34. C. Cheng, Z. Zhu, S. Li, G. Ren, J. Zhang, H. Cong, Y. Peng, J. Han, C. Chang, H. Zhao, Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid. RSC Advances, 9(2019) 20240-20247, https://doi.org/10.1039/C9RA02971K.

    Article  Google Scholar 

  35. J. A. Zeitler, D. A. Newnham, P. F. Taday, C. J. Strachan, M. Pepper, K. C. Gordon, T. Rades, Temperature dependent terahertz pulsed spectroscopy of carbamazepine. Thermochimica Acta, 436(2005) 71-77, https://doi.org/10.1016/j.tca.2005.07.006.

    Article  Google Scholar 

  36. K. C. Oppenheim, T. M. Korter, J. S. Melinger, D. Grischknowsky, Solid-state density functional theory investigation of the terahertz spectra of the structural isomers 1, 2-dicyanobenzene and 1, 3-dicyanobenzene. The Journal of Physical Chemistry A, 114(2010) 12513-12521, https://doi.org/10.1021/jp107597q.

    Article  Google Scholar 

  37. F. Zhang, H. Wang, K. Tominaga, M. Hayashi, Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid‐state density functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2016) 386-409, https://doi.org/10.1002/wcms.1256.

    Article  Google Scholar 

  38. M. Walther, P. Plochocka, B. Fisher, H. Helm, P. U. Jepsen, Collective vibrational modes in biological molecules investigated by terahertz time‐domain spectroscopy. Biopolymers: Original Research on Biomolecules, 67(2002) 310-313, https://doi.org/10.1002/bip.10106.

  39. F. Wang, D. Zhao, H. Dong, L. Jiang, Y. Liu, S. Li, Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179(2017) 255-260, https://doi.org/10.1016/j.saa.2017.02.037.

    Article  Google Scholar 

  40. V. P. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. T. Chien, J. R. Lane, A. P. Ijzerman, R. C. Stevens, The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science, 322(2008) 1211-1217, https://doi.org/10.1126/science.1164772.

  41. G. Lebon, T. Wang, P. C. Edwards, K. Bennett, C. J. Langmead, A. G. W. Leslie, Agonist-bound adenosine A 2A receptor structures reveal common features of GPCR activation. Nature, 474(2011) 521-525, https://doi.org/10.1038/nature10136.

    Article  Google Scholar 

  42. D. Stamatis, P. Lagarias, K. Barkan, E. Vrontaki, A. Kolocouris, Structural characterization of agonist binding to an A3 adenosine receptor through biomolecular simulations and mutagenesis experiments. Journal of medicinal chemistry, 62(2019) 8831–8846, https://doi.org/10.26434/chemrxiv.8967944.

  43. R. Balu, H. Zhang, E. Zukowski, J. Y. Chen, A. G, Markelz, S. K. Gregurick, Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophysical Journal, 94(2008) 3217–3226, https://doi.org/10.1529/biophysj.107.105163.

  44. K. Hand, E. Yates, Terahertz: dictating the frequency of life. Do macromolecular vibrational modes impose thermal limitations on terrestrial life? Journal of The Royal Society Interface, 14(2017) 20170673, https://doi.org/10.1098/rsif.2017.0673.

  45. Z. Zhu, C. Chang, Y. Shu, B. Song, Transition to a Superpermeation Phase of Confined Water Induced by a Terahertz Electromagnetic Wave. Journal of Physical Chemistry Letters, 11(2020) 256-262, https://doi.org/10.1021/acs.jpclett.9b03228.

    Article  Google Scholar 

  46. T. Globus, T. Khromova, D. Woolard, B. Gelmont, Terahertz Fourier transform characterization of biological materials in a liquid phase. Journal of Physics D: Applied Physics, 39(2006) 3405, https://doi.org/10.1088/0022-3727/39/15/028.

    Article  Google Scholar 

  47. Y. Li, C. Chang, Z. Zhu, L. Sun, C. Fan, Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. Journal of the American Chemical Society, 143(2021) 4311-4318, https://doi.org/10.1021/jacs.0c09401.

    Article  Google Scholar 

  48. D. A. Mahamed, L. E. Toussaint, M. S. Bynoe, CD73-generated adenosine is critical for immune regulation during Toxoplasma gondii infection. Infection and immunity, 83(2015) 721-729, https://doi.org/10.1128/iai.02536-14.

    Article  Google Scholar 

  49. J. Zhang, L. Zhang, Y. Xu, S. Jiang, Y. Shao, Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex. PloS one, 13(2018) e0196651, https://doi.org/10.1371/journal.pone.0196651.

    Article  Google Scholar 

  50. Q. Zhou, Z. Liu, L. Zhu, W. Lu, L. He, D. Wang, Oxidative dehydrogenation of propane on boron phosphate: A computational mechanistic study. The Journal of Physical Chemistry C, 127(2023) 12942-12952, https://doi.org/10.1021/acs.jpcc.3c00838.

    Article  Google Scholar 

  51. H. Zhang, W. Tang, P. Xie, S. Zhao, Demystifying solvent effects on diels-alder reactions in pure and mixed solvents: A combined electronic DFT and QM/MM study. Industrial & Engineering Chemistry Research, 62(2023) 7721-7730, https://doi.org/10.1021/acs.iecr.3c01033.

    Article  Google Scholar 

  52. J. Wang, D. Yang, K. Qi, S. Lai, X. Li, X. Ju, W. Liu, C. He, D. Wang, Y. Zhao, Y. Ke, H. Xu, Effect of achiral glycine residue on the handedness of surfactant-like short peptide self-assembly nanofibers. Langmuir, 39(2023) 9932-9941, https://doi.org/10.1021/acs.langmuir.3c01165.

    Article  Google Scholar 

  53. P. I. Napy, G. Alagona, C. Ghio, K. Takács-Novák, Theoretical conformational analysis for neurotransmitters in the gas phase and in aqueous solution. Norepinephrine. Journal of the American Chemical Society, 125(2003) 2770–85, https://pubs.acs.org/doi/10.1021/ja028952n.

  54. D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, K. Wynne, Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nature Communications, 5(2014) 3999, https://doi.org/10.1038/ncomms4999.

    Article  Google Scholar 

  55. K. N. Woods, J. Pfeffer, J. Klein-Seetharaman, Chlorophyll-derivative modulation of rhodopsin signaling properties through evolutionarily conserved interaction pathways. Frontiers in Molecular Biosciences, 4(2017) 85, https://doi.org/10.3389/fmolb.2017.00085.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of beamlines BL06B and BL17B at Shanghai Synchrotron Radiation Facilities (SSRF) for providing the beam time.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62075225), the Joint Key Projects of National Natural Science Foundation of China (U2032206), and the National Defense Science and Technology Innovation Special Zone.

Author information

Authors and Affiliations

Authors

Contributions

H. Z. initiated the research. H. Z. and Z. Z. designed research. J. Z. prepared the samples and performed the XRD, SEM, and FTIR experiments; J. Z., Z. Z., and Y. W. performed the theoretical calculations and analysis. T. J., J. W., H. Z., W. P., and M. C. technically assisted the FTIR measurement; J. Z. and Z. Z. wrote the original manuscript; H. Z., Z. Z., and S. L. revised the manuscript. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Zhongjie Zhu or Hongwei Zhao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhu, Z., Wu, Y. et al. Broadband Terahertz Spectroscopy and Weak Interactions of Adenosine with Vibrational Mode Analysis. J Infrared Milli Terahz Waves 44, 814–829 (2023). https://doi.org/10.1007/s10762-023-00942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-023-00942-1

Keywords