Abstract
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z 2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual–Weighted–Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Series in Computational and Applied Mathematics. Elsevier, Amsterdam (1996)
Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)
Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)
Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)
Aston, P.J.: Analysis and computation of symmetry-breaking bifurcation and scaling laws using group theoretic methods. SIAM J. Math. Anal. 22, 139–152 (1991)
Babuška, I., Osborn, J.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)
Babuška, I., Tsuchiya, T.: A posteriori error estimates of the finite element solutions of parameterized nonlinear equations. Technical report, University of Maryland (1992)
Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zurich. Birkhäuser, Basel (2003)
Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001)
Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems. 3. Simple bifurcation points. Numer. Math. 38(1), 1–30 (1981)
Cliffe, K.A., Garratt, T.J., Spence, A.: Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations. Adv. Comput. Math. 1, 337–356 (1993)
Cliffe, K.A., Hall, E., Houston, P.: Adaptivity and a posteriori error control for bifurcation problems III: Incompressible fluid flow in open systems with O(2) symmetry. In preparation
Cliffe, K.A., Hall, E., Houston, P.: Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31, 4607–4632 (2010)
Cliffe, K.A., Hall, E., Houston, P., Phipps, E.T., Salinger, A.G.: Adaptivity and a posteriori error control for bifurcation problems I: The Bratu problem. Commun. Comput. Phys. 8, 845–865 (2010)
Cliffe, K.A., Spence, A., Tavener, S.J.: O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe. Int. J. Numer. Methods Fluids 32, 175–200 (2000)
Cliffe, K.A., Tavener, S.J.: The effect of cylinder rotation and blockage ratio on the onset of periodic flows. J. Fluid Mech. 501, 125–133 (2004)
Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for the Oseen equations. Math. Comput. 73, 569–593 (2004)
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343 (2002)
Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999)
Durán, R.G., Padra, C., Rodriguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)
Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995)
Fearn, R.M., Mullin, T., Cliffe, K.A.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990)
Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)
Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)
Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)
Griewank, A., Reddien, G.: The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3(3), 295–303 (1983)
Hansbo, P., Larson, M.G.: Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 2002 (1895–1908)
Hartmann, R.: Adaptive finite element methods for the compressible Euler equations. Ph.D. thesis, University of Heidelberg (2002)
Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)
Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001)
Houston, P., Süli, E.: Adaptive finite element approximation of hyperbolic problems. In: Barth, T., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Engrg, vol. 25, pp. 269–344. Springer, Berlin (2002)
Jepson, A.D.: Numerical Hopf Bifurcation. Ph.D. thesis. Caltech, Pasadena (1981)
Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. Academic Press, New York (1977)
Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38, 608–625 (2000)
Larson, M.G., Barth, T.J.: A posteriori error estimation for discontinuous Galerkin approximations of hyperbolic systems. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)
Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)
Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equ. 24, 244–257 (2009)
Nystedt, C.: A priori and a posteriori error estimates and adaptive finite element methods for a model eigenvalue problem. Technical report 1995-05, Chalmers Finite Element Center, Chalmers University (1995)
Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)
Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007)
Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)
Toselli, A.: hp-Discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12, 1565–1616 (2002)
Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, London (1982)
Verfürth, R.: A posteriori error estimates for nonlinear problems. Math. Comput. 62, 445–475 (1989)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996)
Walsh, T.F., Reese, G.M., Hetmaniuk, U.L.: Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Eng. 196, 3614–3623 (2007)
Werner, B., Janovsky, V.: Computation of Hopf branches bifurcating from Takens-Bogdanov points for problems with symmetries. In: Seydel, R., Schneider, F.W., Kupper, T., Troger, H. (eds.) Bifurcation and Chaos: Analysis, Algorithms, Applications. International Series of Numerical Mathematics, vol. 97, pp. 377–388 (1991)
Werner, B., Spence, A.: The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388–399 (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cliffe, K.A., Hall, E.J.C., Houston, P. et al. Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z 2 Symmetry. J Sci Comput 47, 389–418 (2011). https://doi.org/10.1007/s10915-010-9453-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-010-9453-3