Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A mesh redistribution method is introduced to solve the Kohn-Sham equation. The standard linear finite element space is employed for the spatial discretization, and the self-consistent field iteration scheme is adopted for the derived nonlinear generalized eigenvalue problem. A mesh redistribution technique is used to optimize the distribution of the mesh grids according to wavefunctions obtained from the self-consistent iterations. After the mesh redistribution, important regions in the domain such as the vicinity of the nucleus, as well as the bonding between the atoms, may be resolved more effectively. Consequently, more accurate numerical results are obtained without increasing the number of mesh grids. Numerical experiments confirm the effectiveness and reliability of our method for a wide range of problems. The accuracy and efficiency of the method are also illustrated through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baines, M.J., Hubbard, M.E., Jimack, P.K.: Velocity-based moving mesh methods for nonlinear partial differential equations. Commun. Comput. Phys. 10, 509–576 (2011)

    MathSciNet  Google Scholar 

  2. Beckett, G., Mackenzie, J.A., Robertson, M.L.: An r-adaptive finite element method for the solution of the two-dimensional phase-field equations. Commun. Comput. Phys. 1, 805–826 (2006)

    MATH  Google Scholar 

  3. Chen, H.J., Zhou, A.H.: Orbital-free density functional theory for molecular structure calculations. Numer. Math. Theor. Meth. Appl. 1, 1–28 (2008)

    Google Scholar 

  4. Di, Y.N., Li, R., Tang, T.: A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows. Commun. Comput. Phys. 3, 582–602 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Dvinsky, A.S.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Echenique, P., Alonso, J.L.: A mathematical and computational review of Hartree-Fock SCF methods in quantum chemistry. Mol. Phys. 105(23–24), 3057–3098 (2007)

    Article  Google Scholar 

  7. Emsley, J.: The Elements. Oxford University Press, London (1991)

    Google Scholar 

  8. Fattebert, J.-L., Buongiorno Nardelli, M.: Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. In: Le Bris, C. (ed.) Computational Chemistry. Handbook of Numerical Analysis, vol. 10, pp. 571–612. Elsevier, Amsterdam (2003). Special volume

    Google Scholar 

  9. Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary, vol. 471. Springer, Berlin (1975)

    MATH  Google Scholar 

  10. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  11. Hu, G.H., Zegeling, P.A.: Simulating finger phenomenon in porous media with a moving finite element method. J. Comput. Phys. 230, 3249–3263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, G.H., Qiao, Z.H., Tang, T.: Moving finite element simulations for reaction-diffusion systems. Adv. Appl. Math. Mech. 4, 365–381 (2012)

    MathSciNet  Google Scholar 

  13. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences. Springer, Berlin (2010)

    Google Scholar 

  14. Hung, L., Huang, C., Carter, E.A.: Preconditioners and electron density optimization in orbital-free density functional theory. Commun. Comput. Phys. 12, 135–161 (2012)

    Google Scholar 

  15. Johnson III, R.D.: NIST computational chemistry comparison and benchmark database, and NIST standard reference database (2011). http://cccbdb.nist.gov/

  16. Kleinman, L., Bylander, D.M.: Effcacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982)

    Article  Google Scholar 

  17. Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSC. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  19. Kotochigova, S., Levine, Z.H., Shirley, E.L., Stiles, M.D., Clark, C.W.: Local-density-functional calculations of the energy of atoms. Phys. Rev. A 55, 191–199 (1997)

    Article  Google Scholar 

  20. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, Condens. Matter 54, 11169–11186 (1996)

    Article  Google Scholar 

  21. Lehtovaara, L., Havu, V., Puska, M.: All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys. 131, 054103 (2009)

    Article  Google Scholar 

  22. Li, R., Tang, T., Zhang, P.W.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, R., Tang, T., Zhang, P.W.: A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, L., Lu, J., Ying, L., Weinan, E.: Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys. 231(4), 2140–2154 (2012)

    Article  MATH  Google Scholar 

  25. Marques, M., Fiolhais, C., Nogueira, F. (eds.): A Primer in Density Functional Theory. 1st edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  26. Marques, M.A.L., Oliveira, M.J.T., Burnus, T.: Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183(10), 2272–2281 (2012)

    Article  Google Scholar 

  27. Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics and Chemistry. NATO ASI Ser. C, vol. 525. Kluwer, Dordrecht (1999)

    Google Scholar 

  28. Oliveira, M.J.T., Nogueira, F.: Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the atomic pseudo-potential engine. Comput. Phys. Commun. 178, 524–534 (2007)

    Article  Google Scholar 

  29. Pask, J.E., Sterne, P.A.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3), R71 (2005)

    Article  Google Scholar 

  30. Perdew, J.P., Wang, Y.: Accurate and simple analytical representation of the electron-gas correlation energy. Phys. Rev. B, Condens. Matter 45, 13244–13249 (1992)

    Article  Google Scholar 

  31. Schoen, R., Yau, S.-T.: On univalent harmonic maps between surfaces. Invent. Math. 44, 265–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Suryanarayana, P., Gavini, V., Blesgen, T., Bhattacharya, K., Ortiz, M.: Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58, 256–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suryanarayana, P., Bhattacharya, K., Ortiz, M.: A mesh-free convex approximation scheme for Kohn-Sham density functional theory. J. Comput. Phys. 230(13), 5226–5238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, T.: Moving mesh methods for computational fluid dynamics. Contemp. Math. 383 (2005)

  35. Torsti, T., Eirola, T., Enkovaara, J., Hakala, T., Havu, P., Havu, V., Höynälänmaa, T., Ignatius, J., Lyly, M., Makkonen, I., Rantala, T.T., Ruokolainen, J., Ruotsalainen, K., Räsänen, E., Saarikoski, H., Puska, M.J.: Three real-space discretization techniques in electronic structure calculations. Phys. Status Solidi (b) 243, 1016–1053 (2006)

    Article  Google Scholar 

  36. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 43, 1993–2006 (1991)

    Article  Google Scholar 

  37. Tsuchida, E., Tsukada, M.: Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B, Condens. Matter Mater. Phys. 54, 7602–7605 (1996)

    Article  Google Scholar 

  38. van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216(2), 526–546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Veillard, A., Clementi, E.: Correlation energy in atomic systems. V. Degeneracy effects for the second-row atoms. J. Chem. Phys. 49, 2415–2421 (1968)

    Article  Google Scholar 

  40. Wang, H.Y., Li, R., Tang, T.: Efficient computation of dendritic growth with r-adaptive finite element methods. J. Comput. Phys. 227(12), 5984–6000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, C., Gao, W.G., Meza, J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, D.E., Shen, L.H., Zhou, A.H., Gong, X.G.: Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh. Phys. Lett. A 372, 5071–5076 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Chao Yang (Lawrence Berkeley National Laboratory) for his helpful comments, suggestions on this work. The research was supported in part by the NSF Focused Research Group grant DMS-0968360. The research of G. Bao was supported in part by the NSF grants DMS-0908325, CCF-0830161, EAR-0724527, DMS-0968360, DMS-1211292, the ONR grant N00014-12-1-0319, a Key Project of the Major Research Plan of NSFC (No. 91130004), and a special research grant from Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, G., Hu, G. & Liu, D. Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique. J Sci Comput 55, 372–391 (2013). https://doi.org/10.1007/s10915-012-9636-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9636-1

Keywords