Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Global Synchronization Stability for Stochastic Complex Dynamical Networks with Probabilistic Interval Time-Varying Delays

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The synchronization problem for a class of complex dynamical networks with stochastic disturbances and probabilistic interval time-varying delays is investigated. Based on the stochastic analysis techniques and properties of the Kronecker product, some delay-dependent asymptotical synchronization stability criteria are derived in the form of linear matrix inequalities (LMIs). The solvability of derived conditions depends not only on the size of the delay, but also on the probability of Bernoulli stochastic variables. A numerical example is given to illustrate the feasibility and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana, M.: Boolean dynamics of networks with scale-free topology. Physica D. Nonlinear Phenom. 185, 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dangalchev, C.: Generation models for scale-free networks. Physica A. Stat. Mech. Appl. 338, 659–671 (2004)

    Article  MathSciNet  Google Scholar 

  3. Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II, Express Briefs 53, 28–33 (2006)

    Article  Google Scholar 

  4. Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53, 153–165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003)

    Article  Google Scholar 

  6. Gao, H., Lam, J., Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A 360, 263–273 (2006)

    Article  MATH  Google Scholar 

  7. Li, C., Sun, W., Kurths, J.: Synchronization of complex dynamical networks with time delays. Physica A. Stat. Mech. Appl. 361, 24–34 (2006)

    Article  Google Scholar 

  8. Liu, X., Chen, T.: Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling. Physica A. Stat. Mech. Appl. 381, 82–92 (2007)

    Article  Google Scholar 

  9. Wang, Y., Wang, Z., Liang, J.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. Phys. Lett. A 372, 6066–6073 (2008)

    Article  MATH  Google Scholar 

  10. Wang, Y., Wang, Z., Liang, J.: Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances. J. Phys. A, Math. Theor. 42, 135101–135111 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos. Interdiscip. J. Nonlinear Sci. 16, 013133–013143 (2006)

    Article  MathSciNet  Google Scholar 

  12. Jiang, Y.: Globally coupled maps with time delay interactions. Phys. Lett. A 267, 342–349 (2000)

    Article  Google Scholar 

  13. Lu, W., Chen, T.: Synchronization analysis of linearly coupled networks of discrete time systems. Physica D. Nonlinear Phenom. 198, 148–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duan, Z., Chen, G., Huang, L.: Synchronization of weighted networks and complex synchronized regions. Phys. Lett. A 372, 3741–3751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, W., Cao, J., Lu, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7, 108–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hua, C., Wang, Q., Guan, X.: Global adaptive synchronization of complex networks with nonlinear delay coupling interconnections. Phys. Lett. A 368, 281–288 (2007)

    Article  MATH  Google Scholar 

  17. Li, Z., Jiao, L., Lee, J.: Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. Physica A. Stat. Mech. Appl. 387, 1369–1380 (2008)

    Article  Google Scholar 

  18. Wang, Z., Liu, Y., Li, M., Liu, X.: Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 17, 814–820 (2006)

    Article  Google Scholar 

  19. Liang, J., Wang, Z., Liu, Y., Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances. IEEE Trans. Syst. Man Cybern., Part B 38, 1073–1083 (2008)

    Article  Google Scholar 

  20. Sun, Y., Cao, J., Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70, 2477–2485 (2007)

    Article  Google Scholar 

  21. Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353, 318–325 (2006)

    Article  Google Scholar 

  22. Wang, Z., Liu, Y., Liu, X.: H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities. Automatica 44, 1268–1277 (2008)

    Article  Google Scholar 

  23. Wang, S., Nathuji, R., Bettati, R., Zhao, W.: Providing statistical delay guarantees in wireless networks. In: International Conference on Distributed Computing Systems, vol. 24, pp. 48–57 (2004)

    Google Scholar 

  24. Luo, R., Chung, L.: Stabilization for linear uncertain system with time latency. IEEE Trans. Ind. Electron. 49, 905–910 (2002)

    Article  Google Scholar 

  25. Moon, Y., Park, P., Kwon, W.: Robust stabilization of uncertain input-delayed systems using reduction method. Automatica 37, 307–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Park, H., Kim, Y., Kim, D., Kwon, W.: A scheduling method for network-based control systems. IEEE Trans. Control Syst. Technol. 10, 318–330 (2002)

    Article  Google Scholar 

  27. Yue, D., Tian, E., Zhang, Y., Peng, C.: Delay-distribution-dependent robust stability of uncertain systems with time-varying delay. Int. J. Robust Nonlinear Control 19, 377–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y., Yue, D., Tian, E.: Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay. Neurocomputing 72, 1265–1273 (2009)

    Article  Google Scholar 

  29. Wang, Z., Ho, D., Liu, X.: Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II, Express Briefs 51, 320–326 (2004)

    Article  Google Scholar 

  30. Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40, 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, S., Lam, J., Zou, Y.: New results on delay-dependent robust H control for systems with time-varying delays. Automatica 42, 343–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, F., Wang, Z., Hung, Y., Gani, M.: H control for networked systems with random communication delays. IEEE Trans. Autom. Control 51, 511–518 (2006)

    Article  MathSciNet  Google Scholar 

  33. Yu, W., Cao, J., Lu, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7, 108–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Langville, A., Stewart, W.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mao, X.: Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Autom. Control 47, 1604–1612 (2002)

    Article  Google Scholar 

  36. Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40, 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, S., Lam, J.: Improved delay-dependent stability criteria for time-delay systems. IEEE Trans. Autom. Control 50, 384–387 (2005)

    Article  MathSciNet  Google Scholar 

  38. Yue, D., Han, Q.: Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching. IEEE Trans. Autom. Control 50, 217–222 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Wong.

Additional information

Communicated by Felix L. Chernousko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wong, W.K. & Tang, Y. Global Synchronization Stability for Stochastic Complex Dynamical Networks with Probabilistic Interval Time-Varying Delays. J Optim Theory Appl 152, 496–516 (2012). https://doi.org/10.1007/s10957-011-9917-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9917-0

Keywords