Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fabrication of lightweight, tough polypropylene composite foams: effects of nucleating agent structure on the foaming behavior and tensile property of polypropylene foams

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The type and structure of nucleating agents have an important influence on the properties of the final foam as well as on the nucleation of the bubbles during injection foaming. In this study, a simple melt blending method was used to prepare polypropylene/nucleating agents (PP/NAs) composites containing nucleating agents with different structures, and the rheological behavior of the PP/NAs composites was studied using a rotational rheometer. According to the rheological data, the structure of the nucleating agent was not the primary reason for influencing polymer viscosity. Additionally, PP/NAs composite foams were prepared by chemical foaming injection molding process and the bubble dynamics, cell quality and tensile properties were investigated. The results exhibited that polymers with β-cyclodextrin (β-CD), which had a self-contained cavity-circular table structure, as the nucleating agent have better bubble nucleation dynamics. The tensile toughness of PP/β-CD foam was increased from 8.21 MJ/cm3 to 20.54 MJ/cm3, an improvement of 150.34% by comparison with pure PP foam, which was attributed to having an average cell diameter of 23.98 μm and a cell density of 2.36 × 107 cells/cm3. Therefore, this study provides a reference for the design of efficient nucleating agents for the preparation of structural foam materials with lightweight and tough properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Deng R, Jiang T, Liu B et al (2022) Visual observation and Numerical studies of bubble formation of polypropylene chemical foaming system in the different injection foaming environment. J Polym Res 29(9):363. https://doi.org/10.1007/s10965-022-03183-3

    Article  CAS  Google Scholar 

  2. Dugad R, Radhakrishna G, Gandhi A (2020) Recent advancements in manufacturing technologies of microcellular polymers: a review. J Polym Res 27(7):182. https://doi.org/10.1007/s10965-020-02157-7

    Article  CAS  Google Scholar 

  3. Zhao S, Pan C, Xin Z et al (2019) 13X zeolite as Difunctional nucleating agent regulating the crystal form and improving the foamability of blocked copolymerized polypropylene in supercritical CO2 foaming process. J Polym Res 26(3):58. https://doi.org/10.1007/s10965-019-1719-3

    Article  CAS  Google Scholar 

  4. Shahbazi M, Aghvami-Panah M, Panahi‐Sarmad M et al (2022) Fabricating bimodal microcellular structure in polystyrene/carbon nanotube/glass‐fiber hybrid nanocomposite foam by microwave‐assisted heating: a proof‐of‐concept study. J Appl Polym Sci 139(19):52125. https://doi.org/10.1002/app.52125

    Article  CAS  Google Scholar 

  5. Ge Y, Fang Z, Liu T (2022) Accurate determination of bubble size and expansion ratio for polymer foaming with non-isothermal PBB model based on additional energy conservation. Chem Eng Sci 250:117415. https://doi.org/10.1016/j.ces.2021.117415

    Article  CAS  Google Scholar 

  6. Xiang P, Bi S, Mei F et al (2021) Preparation of PLA with High Impact-Toughness and reduced internal stress via formation of laminated, Bimodal structure with Micro/Nanocells. Macromol Mater Eng 306(11):2100426. https://doi.org/10.1002/mame.202100426

    Article  CAS  Google Scholar 

  7. Zhang X, Zhao S, Kuo S-W et al (2021) An effective nucleating agent for isotactic polypropylene (iPP): zinc bis- (nadic anhydride) double-decker silsesquioxanes. Polymer 220:123574. https://doi.org/10.1016/j.polymer.2021.123574

    Article  CAS  Google Scholar 

  8. Pang Y, Cao Y, Zheng W et al (2022) A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem Eng J 430:132662. https://doi.org/10.1016/j.cej.2021.132662

    Article  CAS  Google Scholar 

  9. Wang G, Zhao J, Ge C et al (2021) Nanocellular poly(ether-block-amide)/MWCNT nanocomposite films fabricated by stretching-assisted microcellular foaming for high-performance EMI shielding applications. J Mater Chem C 9(4):1245–1258

    Article  CAS  Google Scholar 

  10. Shi Z, Liu X, Zhou Y et al (2022) Study of graphene oxide complexed hemicucurbit[6]uril on polypropylene composites: crystallization behavior, foaming performance, and mechanical properties. Polym Adv Technol 33(8):2498–2510

    Article  CAS  Google Scholar 

  11. Zhao J, Wang G, Chen Z et al (2021) Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam. Compos Part B: Eng 215:108786. https://doi.org/10.1016/j.compositesb.2021.108786

    Article  CAS  Google Scholar 

  12. Zhang A, Chai J, Yang C et al (2021) Fibrosis mechanism, crystallization behavior and mechanical properties of in-situ fibrillary PTFE reinforced PP composites. Mater Design 211:110157. https://doi.org/10.1016/j.matdes.2021.110157

    Article  CAS  Google Scholar 

  13. Bhagat AB, Pal R, Ghosh AK (2023) Foam processability of polypropylene/sisal fiber composites having near-critical fiber length for acoustic absorption properties. Polym Compos. https://doi.org/10.1002/pc.27797

    Article  Google Scholar 

  14. Liu Y, Guan Y, Zhai J et al (2023) Enhanced mechanical properties, thermal behavior and foaming ability of PP-g‐MAH modified PP/BF composites. Polym Compos 44(9):6228–6241

    Article  CAS  Google Scholar 

  15. Wang G, Zhao G, Dong G et al (2018) Lightweight and strong microcellular injection molded PP/talc nanocomposite. Compos Sci Technol 168:38–46

    Article  CAS  Google Scholar 

  16. Zhao J, Qiao Y, Wang G et al (2020) Lightweight and tough PP/talc composite foam with bimodal nanoporous structure achieved by microcellular injection molding. Mater Design 195:109051. https://doi.org/10.1016/j.matdes.2020.109051

    Article  CAS  Google Scholar 

  17. Wang D, Li J, Zhang X et al (2020) Poly(propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property. Compos Commun 22:100520. https://doi.org/10.1016/j.coco.2020.100520

    Article  Google Scholar 

  18. Jiang M, Li H, Fang D et al (2014) Structure–property relationship in injection-molded Polypropylene/Clay composite foams. Mater Manuf Processes 29(2):160–165

    Article  CAS  Google Scholar 

  19. Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60:379–391

    Article  CAS  Google Scholar 

  20. Goodarzi V, Fasihi M, Garmabi H et al (2020) Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams. Mater Today Commun 25:101447. https://doi.org/10.1016/j.mtcomm.2020.101447

    Article  CAS  Google Scholar 

  21. Yuan W, Wang F, Gao C et al (2020) Enhanced foamability of isotactic polypropylene/polypropylene-grafted‐nanosilica nanocomposites in supercritical carbon dioxide. Polym Eng Sci 60(6):1353–1364

    Article  CAS  Google Scholar 

  22. Qiang W, Zhao L, Gao X et al (2020) Dual role of PDMS on improving supercritical CO2 foaming of polypropylene: CO2-philic additive and crystallization nucleating agent. J Supercrit Fluids 163:104888. https://doi.org/10.1016/j.supflu.2020.104888

    Article  CAS  Google Scholar 

  23. Leung SN, Wong A, Wang LC et al (2012) Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J Supercrit Fluids 63:187–198

    Article  CAS  Google Scholar 

  24. Wong A, Park CB (2012) The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chem Eng Sci 75:49–62

    Article  CAS  Google Scholar 

  25. Leung SN, Wong A, Park CB et al (2008) Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. J Appl Polym Sci 108(6):3997–4003

    Article  CAS  Google Scholar 

  26. Wang C, Leung SN, Bussmann M, Zhai WT, Park CB (2010) Numerical Investigation of Nucleating-Agent-enhanced heterogeneous nucleation. Ind Eng Chem Res 49(24):12783–12792

    Article  CAS  Google Scholar 

  27. Liu S, Yin S, Duvigneau J et al (2020) Bubble seeding nanocavities: multiple polymer foam cell nucleation by polydimethylsiloxane-grafted designer Silica Nanoparticles. ACS Nano 14(2):1623–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou Y, He L, Gong W (2020) Effect of Organic Cage Nucleating Agent Structure on Nucleating Efficiency and the Structure-Property Relationship. Polymers 12(9):1975. https://doi.org/10.3390/polym12091975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong W, He L, Gao J et al (2009) Foaming accelerators for polypropylene micro-cellular foamed plastics. J Chongqing Univ 32(2):181–186

    CAS  Google Scholar 

  30. Yang J, Jiang T, Liu B et al (2021) Experimental and numerical analysis of bubble nucleation in foaming polymer. Mater Design 203:109577. https://doi.org/10.1016/j.matdes.2021.109577

    Article  CAS  Google Scholar 

  31. Zhou Y, He L, Gong W (2021) Application of a novel cavity nucleating agent based on cyclodextrin in Polymer foaming materials and in situ visual injection moulding study. J Mater Sci 56(22):12936–12947

    Article  CAS  Google Scholar 

  32. Liu B, Gu J, Jiang T et al (2021) Designer petals shape ZnO nanoparticles as nucleating agents: Verification the mechanism of cavity nucleation in the polymer for foaming. Polym Test 104:107398. https://doi.org/10.1016/j.polymertesting.2021.107398

    Article  CAS  Google Scholar 

  33. Chai K, Xu Z, Chen D et al. (2022) Effect of nano TiO2 on the cellular structure and mechanical properties of wood flour/polypropylene composite foams via mold-opening foam injection molding. J Appl Polym Sci 139(34). https://doi.org/10.1002/app.52603

  34. Shirvanimoghaddam K, Balaji KV, Yadav R et al (2021) Balancing the toughness and strength in polypropylene composites. Compos Part B Eng (Oct 15):223. https://doi.org/10.1016/j.compositesb.2021.109121

    Article  CAS  Google Scholar 

  35. Sun X, Kharbas H, Peng J et al (2015) A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer 56:102–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Thousand Level Innovative Talents Project of Guizhou Province (No. GCC [2022]045) for the financial support in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li He or Tuanhui Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Visualization system combined with numerical model was applied to analyze the bubble nucleation dynamics of PP/NAs.

• PP/β-CD foam had excellent tensile toughness.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Gu, J., Liu, B. et al. Fabrication of lightweight, tough polypropylene composite foams: effects of nucleating agent structure on the foaming behavior and tensile property of polypropylene foams. J Polym Res 31, 142 (2024). https://doi.org/10.1007/s10965-024-03978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03978-6

Keywords