Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring the synthesis of poly(azomethine-ester) through oxidative polycondensation of salicylaldehyde schiff bases

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work outlines the synthesis of Schiff base derivatives through the reaction of O-acyl salicylaldehyde with diverse amines, facilitated by ethanol as a solvent. The derivatives were structurally analyzed using 1H and 13C-NMR, FT-IR, and LC–MS techniques. The Schiff base derivative, bearing a phenol moiety, subsequently underwent oxidative polycondensation reaction in water, employing NaOCl as the mild and safe oxidant, presenting a sustainable alternative to conventional methods. The polymer was then subjected to investigations using 1H-NMR, FT-IR, DSC, TGA, SEM, and EDX spectroscopies, revealing exceptional thermal stability suitable for high-temperature applications. The results not only contribute to the development of poly(azomethine-ester) but also highlight the importance of adopting environmentally friendly methodologies in materials synthesis. The findings highlight the potential biological applications of the imine linkage and emphasize the use of green chemistry principles to promote sustainability in synthetic chemistry practices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonablerequest.

References

  1. Bhandarkar SE, Pathare PP, Khobragade BP (2023) New Nickel (II), Copper (II) and Cobalt (II) Complexes Based Salicyaldehyde Schiff Base: Synthesis, Characterisation, and Antiviral Activity. Mater Today Proc 92:807–816. https://doi.org/10.1016/j.matpr.2023.04.381

    Article  CAS  Google Scholar 

  2. Kratky M, Vinsova J (2011) Antiviral Activity of Substituted Salicylanilides - A Review. Mini-Rev Med Chem 11:956–967. https://doi.org/10.2174/138955711797068382

    Article  CAS  PubMed  Google Scholar 

  3. Joseph J, Mary NL, Sidambaram R (2010) Synthesis, Characterization, and Antibacterial Activity of the Schiff Bases Derived from Thiosemicarbazide, Salicylaldehyde, 5-bromosalicylaldehyde and their Copper(II) and Nickel(II) Complexes. Synth React Inorganic, Met Nano-Metal Chem 40:930–933. https://doi.org/10.1080/15533174.2010.522661

    Article  CAS  Google Scholar 

  4. Belay Y, Muller A, Ndinteh DT et al (2023) Synthesis, antibacterial activities, cytotoxicity, and molecular docking studies of Salicyledene derivatives. J Mol Struct 1275:134623. https://doi.org/10.1016/j.molstruc.2022.134623

    Article  CAS  Google Scholar 

  5. Bountagkidou OG, Ordoudi SA, Tsimidou MZ (2010) Structure–antioxidant activity relationship study of natural hydroxybenzaldehydes using in vitro assays. Food Res Int 43:2014–2019. https://doi.org/10.1016/j.foodres.2010.05.021

    Article  CAS  Google Scholar 

  6. Rahmawati NR, Ngadiwiyana N, Prasetya NB, Sarjono PR, Andriani Y, Syamsumir DF, Ismiyarto I (2020) Synthesis of hydroxylated azomethine compounds and the antioxidant activity. AIP Conf Proc 2237:020023. https://doi.org/10.1063/5.0005806

  7. Huseynzada A, Jelsch C, Akhundzada HV et al (2023) Crystal structure, Hirshfeld surface analysis, computational and antifungal studies of dihydropyrimidines on the basis of salicylaldehyde derivatives. J Iran Chem Soc 20:109–123. https://doi.org/10.1007/s13738-022-02659-9

    Article  CAS  Google Scholar 

  8. Santos Oliveira I, Marrote Manzano C, Hideki Nakahata D et al (2022) Antibacterial and antifungal activities in vitro of a novel silver(I) complex with sulfadoxine-salicylaldehyde Schiff base. Polyhedron 225:116073. https://doi.org/10.1016/j.poly.2022.116073

    Article  CAS  Google Scholar 

  9. Elizalde LE, delos Santos G (2008) Preparation of 6-benzyloxo-spirobenzopyran-indoline compounds and the evaluation of their optical activities. Dye Pigment 78:111–116. https://doi.org/10.1016/j.dyepig.2007.10.011

    Article  CAS  Google Scholar 

  10. Gao W, Li Q, Chen J et al (2013) Total synthesis of six 3,4-unsubstituted coumarins. Molecules 18:15613–15623. https://doi.org/10.3390/molecules181215613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moghaddam FM, Kiamehr M, Khodabakhshi MR et al (2010) A new domino Knoevenagel-hetero-Diels-Alder reaction: An efficient catalyst-free synthesis of novel thiochromone-annulated thiopyranocoumarin derivatives in aqueous medium. Tetrahedron 66:8615–8622. https://doi.org/10.1016/j.tet.2010.09.048

    Article  CAS  Google Scholar 

  12. Zakhari JS, Kinoyama I, Hixon MS et al (2011) Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-Diaminopyridine prodrug design and characterization. Bioorganic Med Chem 19:6203–6209. https://doi.org/10.1016/j.bmc.2011.09.019

    Article  CAS  Google Scholar 

  13. Zheng Y, Bin SW, Xuan LJ (2015) Copper-catalyzed oxidative esterification of ortho-formyl phenols without affecting labile formyl group. Tetrahedron Lett 56:4569–4573. https://doi.org/10.1016/j.tetlet.2015.06.024

    Article  CAS  Google Scholar 

  14. Sandhya D (2014) Novel Thermotropic Liquid Crystals with Lateral Aryl Substituent 4:22–26

    Google Scholar 

  15. Lavilla C, De Ilarduya AM, Alla A et al (2012) Bio-based aromatic polyesters from a novel bicyclic diol derived from d-mannitol. Macromolecules 45:8257–8266. https://doi.org/10.1021/ma3013288

    Article  CAS  Google Scholar 

  16. Faig JJ, Smith K, Moretti A et al (2016) One-Pot Polymerization Syntheses: Incorporating Bioactives into Poly(anhydride-esters). Macromol Chem Phys 217:1842–1850. https://doi.org/10.1002/macp.201600115

    Article  CAS  Google Scholar 

  17. Iftikhar B, Javed K, Khan MSU et al (2018) Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors. J Mol Struct 1155:337–348. https://doi.org/10.1016/j.molstruc.2017.11.022

    Article  CAS  Google Scholar 

  18. Devi J, Yadav J, Singh N (2019) Synthesis, characterisation, in vitro antimicrobial, antioxidant and anti-inflammatory activities of diorganotin(IV) complexes derived from salicylaldehyde Schiff bases. Res Chem Intermed 45:3943–3968. https://doi.org/10.1007/s11164-019-03830-3

    Article  CAS  Google Scholar 

  19. Li DQ, Tan MX, Jie L (2012) Synthesis, antioxidant and antibacterial activities of salicylaldehyde azine. Adv Mater Res 396–398:2366–2369. https://doi.org/10.4028/www.scientific.net/AMR.396-398.2366

    Article  CAS  Google Scholar 

  20. Alamri A, El-Newehy MH, Al-Deyab SS (2012) Biocidal polymers: Synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile. Chem Cent J 6:1–13. https://doi.org/10.1186/1752-153X-6-111

    Article  CAS  Google Scholar 

  21. El-Khouly AS, Kenawy E, Safaan AA et al (2011) Synthesis, characterization and antimicrobial activity of modified cellulose-graft-polyacrylonitrile with some aromatic aldehyde derivatives. Carbohydr Polym 83:346–353. https://doi.org/10.1016/j.carbpol.2010.07.047

    Article  CAS  Google Scholar 

  22. Negi H, Singh RK (2021) Study of azomethine functionalized cellulose with salicylaldehyde as novel demetallization agent for metalloporphyrins in crude oil. Cellulose 28:2635–2648. https://doi.org/10.1007/s10570-021-03718-9

    Article  CAS  Google Scholar 

  23. Dos Santos JE, Dockal ER, Cavalheiro ÉTG (2005) Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydr Polym 60:277–282. https://doi.org/10.1016/j.carbpol.2004.12.008

    Article  CAS  Google Scholar 

  24. Kamil F, Abid Hubeatir K, Shamel M, Al-Amiery AA (2015) Microwave-assisted solvent-free synthesis of new polyimine. Cogent Chem 1:1075853. https://doi.org/10.1080/23312009.2015.1075853

    Article  CAS  Google Scholar 

  25. Şenol D, Kaya İ (2017) Synthesis and characterization of azomethine polymers containing ether and ester groups. J Saudi Chem Soc 21:505–516. https://doi.org/10.1016/j.jscs.2015.05.006

    Article  CAS  Google Scholar 

  26. Kausar A, Hussain ST (2013) New generation of thermally stable and conducting poly(azomethine-ester)s: nano-blend formation with polyaniline. Polym Int 62:1442–1450. https://doi.org/10.1002/pi.4438

    Article  CAS  Google Scholar 

  27. Vasanthi BJ, Ravikumar L (2013) Synthesis and Characterization of Poly(azomethine ester)s with a Pendent Dimethoxy Benzylidene Group. Open J Polym Chem 03:70–77. https://doi.org/10.4236/ojpchem.2013.33013

    Article  CAS  Google Scholar 

  28. Qureshi F, Khuhawar MY, Jahangir TM, Channar AH (2021) Synthesis and characterization of new thermally stable, antimicrobial and red-light-emitting poly(azomethine-ester)s. Polym Bull 78:5055–5074. https://doi.org/10.1007/s00289-020-03357-3

    Article  CAS  Google Scholar 

  29. Gul A, Akhter Z, Siddiq M et al (2013) Ferrocene-Based Aliphatic and Aromatic Poly(azomethine)esters: Synthesis, Physicochemical Studies, and Biological Evaluation. Macromolecules 46:2800–2807. https://doi.org/10.1021/ma400192u

    Article  CAS  Google Scholar 

  30. Hamad WM, Azeez HJ, Al-Dujaili AH (2017) Synthesis and mesomorphic properties of 2,4-bis(4′-n-pentyloxybenzoyloxy)- benzylidine-4″- n-alkoxyaniline. Mol Cryst Liq Cryst 652:67–75. https://doi.org/10.1080/15421406.2017.1357426

    Article  CAS  Google Scholar 

  31. Iwan A, Palewicz M, Sikora A et al (2010) Aliphatic–aromatic poly(azomethine)s with ester groups as thermotropic materials for opto(electronic) applications. Synth Met 160:1856–1867. https://doi.org/10.1016/j.synthmet.2010.06.029

    Article  CAS  Google Scholar 

  32. Temizkan K, Kaya İ (2019) Synthesis, characterization, optical and electrochemical band gaps of green poly(azomethine-ester)s containing oxalyl and succinyl units. Bull Mater Sci 42:106. https://doi.org/10.1007/s12034-019-1763-y

    Article  CAS  Google Scholar 

  33. Temizkan K, Kaya İ (2017) Synthesis, characterization, electrochemical and surface morphology properties of poly(azomethine-ester)s. Polym Bull 74:2575–2592. https://doi.org/10.1007/s00289-016-1851-8

    Article  CAS  Google Scholar 

  34. Shukla U, Rao KV, Rakshit AK (2002) Thermotropic liquid-crystalline polymers: synthesis, characterization, and properties of poly (azomethine esters). J Appl Polym Sci 88:153–160. https://doi.org/10.1002/app.11618

    Article  CAS  Google Scholar 

  35. Gul A, Akhter Z, Qureshi R, Bhatti AS (2014) Conducting poly(azomethine)esters: synthesis, characterization and insight into the electronic properties using DFT calculations. RSC Adv 4:22094–22100. https://doi.org/10.1039/C4RA02443E

    Article  CAS  Google Scholar 

  36. Perwin A, Mazumdar N (2024) Synthesis of O-acyl salicylaldehyde derivatives and copolymerization of bis-(2-formylphenyl) fumarate with methyl methacrylate. J Mol Struct 1304:137690. https://doi.org/10.1016/j.molstruc.2024.137690

    Article  CAS  Google Scholar 

  37. Kaya I, Kolcu F, Demiral G et al (2015) Synthesis and characterization of imine polymers of aromatic aldehydes with 4-amino-2-methylquinoline via oxidative polycondensation. Des Monomers Polym 18:89–104. https://doi.org/10.1080/15685551.2014.971395

    Article  CAS  Google Scholar 

  38. Sıdır YG, Pirbudak G, Berber H, Sıdır İ (2017) Study on the electronic and photophysical properties of the substitute-((2-phenoxybenzylidene)amino)phenol derivatives: Synthesis, solvatochromism, electric dipole moments and DFT calculations. J Mol Liq 242:1096–1110. https://doi.org/10.1016/j.molliq.2017.07.070

    Article  CAS  Google Scholar 

  39. Kaya I (2004) Synthesis, characterization, and optimum reaction conditions of oligo-benzylidene-3′-hydroxyaniline. Int J Polym Anal Charact 9:137–151. https://doi.org/10.1080/1023660490890529

    Article  CAS  Google Scholar 

  40. Kaya İ, Koça S, Karaer Yağmur H (2022) The green synthesis of oligo(azomethine)s based on p-anisidine and o-anisidine: reaction conditions, electrochemical and thermal properties. J Macromol Sci Part A Pure Appl Chem 59:849–862. https://doi.org/10.1080/10601325.2022.2140675

    Article  CAS  Google Scholar 

  41. Demetgül C, Delikanlı A, Sarıbıyık OY et al (2012) Schiff Base Polymers Obtained by Oxidative Polycondensation and Their Co(II), Mn(II) and Ru(III) Complexes: Synthesis, Characterization and Catalytic Activity in Epoxidation of Styrene. Des Monomers Polym 15:75–91. https://doi.org/10.1163/156855511X606164

    Article  CAS  Google Scholar 

  42. Kaya İ, Bora E, Aydın A (2014) Synthesis and characterization of Schiff base derivative with pyrrole ring and electrochromic applications of its oligomer. Prog Org Coatings 77:463–472. https://doi.org/10.1016/j.porgcoat.2013.11.008

    Article  CAS  Google Scholar 

  43. Kirihara M, Osugi R, Saito K et al (2019) Sodium Hypochlorite Pentahydrate as a Reagent for the Cleavage of trans -Cyclic Glycols. J Org Chem 84:8330–8336. https://doi.org/10.1021/acs.joc.9b01132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author, Aashna Perwin expresses gratitude to the UGC for granting a fellowship and acknowledges the assistance received from IIT Delhi, MNIT-Jaipur, and CIF-JMI for conducting instrumental analysis on the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashna Perwin.

Ethics declarations

Conflicts of interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perwin, A., Mazumdar, N. Exploring the synthesis of poly(azomethine-ester) through oxidative polycondensation of salicylaldehyde schiff bases. J Polym Res 31, 214 (2024). https://doi.org/10.1007/s10965-024-04070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-04070-9

Keywords