Abstract
We propose a novel approach, referred to as contrastive disentangled representation for query performance prediction (CoDiR-QPP), to estimate search query performance by disentangling query content semantics from query difficulty. Our proposed approach leverages neural disentanglement to isolate the information need expressed in search queries from the complexities that affect retrieval performance. Motivated by empirical observations that varying query formulations for the same information need can significantly impact retrieval outcomes, we hypothesize that separating content semantics from query difficulty can enhance query performance prediction. Utilizing contrastive learning, CoDiR-QPP distinguishes between well-performing and poorly performing query variants, facilitating the estimation of a given query’s performance. Our extensive experiments on four standard benchmark datasets demonstrate that CoDiR-QPP outperforms state-of-the-art baselines in predicting query performance, offering improved semantic similarity computation and higher correlation metrics such as Kendall \(\tau\), Spearman \(\rho\), and scaled Mean Absolute Ranking Error (sMARE).



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All the data and code to reproduce the results are available on https://github.com/sara-salamat/DisentangledQPP
References
Arabzadeh, N., Khodabakhsh, M. & Bagheri, E. (2021) Bert-qpp: Contextualized pre-trained transformers for query performance prediction. In: CIKM
Arabzadeh, N. & Bigdeli, A.e.a. (2021) Matches made in heaven: Toolkit and large-scale datasets for supervised query reformulation. In: CIKM, 4417–4425
Arabzadeh, N., Zarrinkalam, F., Jovanovic, J. & Bagheri, E. (2020) Neural embedding-based metrics for pre-retrieval query performance prediction. In: ECIR
Arabzadeh, N. (2020). Neural embedding-based specificity metrics for pre-retrieval query performance prediction. IP &M Journal, 57(4), 102248.
Arabzadeh, N., Zarrinkalam, F., Jovanovic, J. & Bagheri, E. (2019) Geometric estimation of specificity within embedding spaces. In: CIKM, 2109–2112
Arabzadeh, N., Seifikar, M. & Clarke, C.L. (2022) Unsupervised question clarity prediction through retrieved item coherency. In: CIKM, 3811–3816
Arabzadeh, N., Mitra, B. & Bagheri, E. (2021) Ms marco chameleons: Challenging the ms marco leaderboard with extremely obstinate queries. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 4426–4435
Benham, R., Culpepper, J.S., Gallagher, L., Lu, X. & Mackenzie, J.M. (2018) Towards efficient and effective query variant generation. In: DESIRES
Bui, N.D., Yu, Y. & Jiang, L. (2021) Self-supervised contrastive learning for code retrieval and summarization via semantic-preserving transformations. In: SIGIR
Carbonneau, M.-A., Zaïdi, J., Boilard, J., & Gagnon, G. (2024). Measuring disentanglement: A review of metrics. IEEE Transactions on Neural Networks and Learning Systems, 35(7), 8747–8761. https://doi.org/10.1109/TNNLS.2022.3218982
Carmel, D. & Yom-Tov, E. (2010) Estimating the query difficulty for information retrieval. In: SIGIR
Chan, C.-M., Xu, C., Yuan, R., Luo, H., Xue, W., Guo, Y. & Fu, J. (2024) Rq-rag: Learning to refine queries for retrieval augmented generation. arXiv preprint arXiv:2404.00610
Colombo, P., Staerman, G., Noiry, N. & Piantanida, P. (2022) Learning disentangled textual representations via statistical measures of similarity. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2614–2630. Association for Computational Linguistics, Dublin, Ireland. https://doi.org/10.18653/v1/2022.acl-long.187 . https://aclanthology.org/2022.acl-long.187
Cronen-Townsend, S., Zhou, Y. & Croft, W.B. (2002) Predicting query performance. In: SIGIR. SIGIR ’02. ACM,
Datta, S., MacAvaney, S., Ganguly, D. & Greene, D. (2022) A ‘pointwise-query, listwise-document’ based query performance prediction approach. In: SIGIR
Datta, S. & Ganguly, D.e.a. (2022) A relative information gain-based query performance prediction framework with generated query variants. ACM TOIS 41(2)
Deveaud, R., Mothe, J., Ullah, M. Z., & Nie, J.-Y. (2018). Learning to adaptively rank document retrieval system configurations. ACM TOIS, 37(1), 1–41.
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv
Deveaud, R., Mothe, J. & Nie, J.-Y. (2016) Learning to rank system configurations. In: CIKM, 2001–2004
Do, K. & Tran, T. (2019) Theory and evaluation metrics for learning disentangled representations. arXiv preprint arXiv:1908.09961
Faggioli, G., Zendel, O., Culpepper, J. S., Ferro, N., & Scholer, F. (2022). smare: A new paradigm to evaluate and understand query performance prediction methods. Information Retrieval Journal, 25(2), 94–122.
Fu, Z., Tan, X., Peng, N., Zhao, D. & Yan, R. (2018) Style transfer in text: Exploration and evaluation. AAAI 32(1)
Ganguly, D. & Yilmaz, E. (2023) Query-specific variable depth pooling via query performance prediction. In: SIGIR, 2303–2307
Hauff, C., Azzopardi, L., Hiemstra, D. & Jong, F. (2010) Query performance prediction: Evaluation contrasted with effectiveness. In: ECIR, 204–216 . Springer
Hauff, C. (2010) Predicting the effectiveness of queries and retrieval systems. In: SIGIR Forum, 44, 88
Hauff, C., Hiemstra, D. & Jong, F. (2008) A survey of pre-retrieval query performance predictors. In: CIKM
Hambarde, K. A., & Proença, H. (2023). Information retrieval: Recent advances and beyond. IEEE Access, 11, 76581–76604.
Hashemi, H., Zamani, H. & Croft, W.B. (2019) Performance prediction for non-factoid question answering. In: ICTIR, 55–58
He, J., Larson, M. & Rijke, M. (2008) Using coherence-based measures to predict query difficulty. In: ECIR, 689–694. Springer,
He, B., & Ounis, I. (2006). Query performance prediction. Information Systems, 31(7), 585–594.
He, B. & Ounis, I. (2004) Inferring query performance using pre-retrieval predictors. In: SPIRE. Springer
Hofstätter, S., Althammer, S. & al., M.S. (2020) Improving efficient neural ranking models with cross-architecture knowledge distillation. arXiv:2010.02666
Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R. & Xing, E.P. (2017) Toward controlled generation of text. In: Precup, D., Teh, Y.W. (eds.) ICML. PMLR, 70
Izacard, G. & Caron, M.e.a. (2021) Unsupervised dense information retrieval with contrastive learning. arXiv:2112.09118
John, V., Mou, L., Bahuleyan, H., Vechtomova, O.: Disentangled representation learning for non-parallel text style transfer. In: ACL (2018)
Khramtsova, E., Zhuang, S., Baktashmotlagh, M. & Zuccon, G. (2024) Leveraging llms for unsupervised dense retriever ranking. ArXiv
Kingma, D. & Welling, M. (2013) Auto-encoding variational bayes. arXiv:1312.6114
Kwok, K.L. (1996) A new method of weighting query terms for ad-hoc retrieval. In: SIGIR, 187–195
Li, Y., Liu, Z., Xiong, C. & Liu, Z. (2021) More robust dense retrieval with contrastive dual learning. In: ICTIR, 287–296
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L. & Stoyanov, V. (2019) Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
Mahapatra, D., Jimeno Yepes, A.J., Kuanar, S., Roy, S., Bozorgtabar, B., Reyes, M. & Ge, Z. (2023) Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification, 276–286. Springer, ???. https://doi.org/10.1007/978-3-031-43895-0_26
Mackie, I., Dalton, J. & Yates, A. (2021) How deep is your learning: the dl-hard annotated deep learning dataset. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
Meng, C., Arabzadeh, N., Askari, A., Aliannejadi, M. & Rijke, M. (2024) Ranked list truncation for large language model-based re-ranking. ArXiv
Ngweta, L., Maity, S., Gittens, A., Sun, Y. & Yurochkin, M. (2023) Simple disentanglement of style and content in visual representations. In: ICML
Pal, D. & Ganguly, D. (2021) Effective query formulation in conversation contextualization: A query specificity-based approach. In: ICTIR, 177–183
Pérez-Iglesias, J. & Araujo, L. (2010) Standard deviation as a query hardness estimator. In: SPIRE, 207–212. Springer
Raiber, F. & Kurland, O. (2014) Query-performance prediction: setting the expectations straight. In: SIGIR
Roitman, H., Erera, S. & Feigenblat, G. (2019) A study of query performance prediction for answer quality determination. In: ICTIR
Roy, D., Ganguly, D., Mitra, M., & Jones, G. J. (2019). Estimating gaussian mixture models in the local neighbourhood of embedded word vectors for query performance prediction. IPM, 56(3), 1026–1045.
Sarnikar, S., Zhang, Z., & Zhao, J. L. (2014). Query-performance prediction for effective query routing in domain-specific repositories. JASIST, 65(8), 1597–1614.
Sha, L., & Lukasiewicz, T. (2024). Text attribute control via closed-loop disentanglement. Transactions of the Association for Computational Linguistics, 12, 190–209. https://doi.org/10.1162/tacl_a_00640
Shen, T., Lei, T., Barzilay, R. & Jaakkola, T. (2017) Style transfer from non-parallel text by cross-alignment. In: NeurIPS. NIPS’17
Shtok, A., Kurland, O. & Carmel, D. (2010) Using statistical decision theory and relevance models for query-performance prediction. In: SIGIR, 259–266
Shtok, A., Kurland, O., Carmel, D., Raiber, F., & Markovits, G. (2012). Predicting query performance by query-drift estimation. TOIS, 30(2), 1–35.
Tonellotto, N., Macdonald, C. & Ounis, I. (2013) Efficient and effective retrieval using selective pruning. In: WSDM, 63–72
Tao, Y. & Wu, S. (2014) Query performance prediction by considering score magnitude and variance together. In: CIKM, 1891–1894
Xie, J., Girshick, R. & Farhadi, A. (2016) Unsupervised deep embedding for clustering analysis. In: ICML. PMLR
Yang, N., Wei, F., Jiao, B., Jiang, D. & Yang, L. (2021) xmoco: Cross momentum contrastive learning for open-domain question answering. In: ACL | IJCNLP, 6120–6129
Yang, Z., Hu, Z., Dyer, C., Xing, E.P. & Berg-Kirkpatrick, T. (2018) Unsupervised text style transfer using language models as discriminators. In: NeurIPS
Zamani, H., Croft, W.B. & Culpepper, J.S. (2018) Neural query performance prediction using weak supervision from multiple signals. In: SIGIR, 105–114
Nogueira, R., Lin, J. & Epistemic, A. (2019) From doc2query to doctttttquery. Online preprint 6(2)
Zamani, H., Dumais, S., Craswell, N., Bennett, P. & Lueck, G. (2020) Generating clarifying questions for information retrieval. In: WWW
Zhao, Y., Scholer, F. & Tsegay, Y. (2008) Effective pre-retrieval query performance prediction using similarity and variability evidence. In: ECIR
Zhou, Y. & Croft, W.B. (2007) Query performance prediction in web search environments. In: SIGIR, 543–550
Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods, 12(10), 931–934.
Zuccon, G., Palotti, J. & Hanbury, A. (2016) Query variations and their effect on comparing information retrieval systems. In: CIKM
Author information
Authors and Affiliations
Contributions
Sa.S. ran experiments and wrote the methodology and experiment sections. N.A. ran baselines and helped in writing other parts. E.B. and M.Z. supervised the research and writing of this project. Sh.S. helped with ideation and writing. A.B. helped with ideation. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Editors: Longbing Cao, David Anastasiu, Qi Zhang, Xiaolin Huang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Salamat, S., Arabzadeh, N., Seyedsalehi, S. et al. A contrastive neural disentanglement approach for query performance prediction. Mach Learn 114, 109 (2025). https://doi.org/10.1007/s10994-025-06752-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10994-025-06752-x