Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague–Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets presented in this study can be found in online repositories. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD041288 (The data will be made publicly accessible upon acceptance of this article for publication).

References

  1. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study—the Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14. https://doi.org/10.1136/jnnp.70.1.9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R (2021) Pathogeneses and imaging features of cerebral white matter lesions of vascular origins. Aging Dis 12:2031–2051. https://doi.org/10.14336/AD.2021.0414

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grinberg LT, Thal DR (2010) Vascular pathology in the aged human brain. Acta Neuropathol 119:277–290. https://doi.org/10.1007/s00401-010-0652-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merino J (2019) White matter hyperintensities on magnetic resonance imaging: what is a clinician to do? Mayo Clin Proc 94:380–382. https://doi.org/10.1016/j.mayocp.2019.01.016

    Article  PubMed  Google Scholar 

  5. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666. https://doi.org/10.1136/bmj.c3666

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matthews F, Brayne C, Lowe J, McKeith I, Wharton S, Ince P (2009) Epidemiological pathology of dementia: attributable-risks at death in the medical research council cognitive function and ageing study. PLoS Med 6:e1000180. https://doi.org/10.1371/journal.pmed.1000180

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neuropathology Group of the Medical Research Council Cognitive Function and Aging Study (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175. https://doi.org/10.1016/s0140-6736(00)03589-3

    Article  Google Scholar 

  8. Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P (2023) Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 442:114301. https://doi.org/10.1016/j.bbr.2023.114301

    Article  CAS  PubMed  Google Scholar 

  9. Wang N, Tian Y, Yan F, Zhao F, Wang R, Luo Y, Zheng Y (2022) Berberine protects against chronic cerebral hypoperfusion-induced cognitive impairment and hippocampal damage via regulation of the ERK/Nrf2 pathway. J Chem Neuroanat 123:102119. https://doi.org/10.1016/j.jchemneu.2022.102119

    Article  CAS  PubMed  Google Scholar 

  10. Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577. https://doi.org/10.1126/science.aaf8924

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai Q, Xue M, Yong VW (2020) Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 143:1297–1314. https://doi.org/10.1093/brain/awz393

    Article  PubMed  Google Scholar 

  12. Ran H, Duan W, Gong Z, Xu S, Zhu H, Hou X, Jiang L, He Q, Zheng J (2015) Critical contribution of adenosine A2A receptors in bone marrow-derived cells to white matter lesions induced by chronic cerebral hypoperfusion. J Neuropathol Exp Neurol 74:305–318. https://doi.org/10.1097/NEN.0000000000000174

    Article  CAS  PubMed  Google Scholar 

  13. Mou K, Shen K, Li Y, Wu Z, Duan W (2021) viaAdenosine A receptor in bone marrow-derived cells mediated macrophages M2 polarization PPARγ-P65 pathway in chronic hypoperfusion situation. Front Aging Neurosci 13:792733. https://doi.org/10.3389/fnagi.2021.792733

    Article  CAS  PubMed  Google Scholar 

  14. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, Kular L, Needhamsen M, Espinosa A, Nilsson E, Overby AK, Butovsky O, Jagodic M, Zhang XM, Harris RA (2018) Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun 9:4845. https://doi.org/10.1038/s41467-018-07295-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gülke E, Gelderblom M, Magnus T (2018) Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 11:1756286418774254. https://doi.org/10.1177/1756286418774254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stowe AM, Wacker BK, Cravens PD, Perfater JL, Li MK, Hu R, Freie AB, Stuve O, Gidday JM (2012) CCL2 upregulation triggers hypoxic preconditioning-induced protection from stroke. J Neuroinflammation 9:33. https://doi.org/10.1186/1742-2094-9-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kramann N, Menken L, Pfortner R, Schmid SN, Stadelmann C, Wegner C, Bruck W (2019) Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizone-induced demyelination. Glia 67:1308–1319. https://doi.org/10.1002/glia.23605

    Article  PubMed  Google Scholar 

  18. Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallieres L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M (2015) CXCL10 triggers early microglial activation in the cuprizone model. J Immunol 194:3400–3413. https://doi.org/10.4049/jimmunol.1401459

    Article  CAS  PubMed  Google Scholar 

  19. Giannoni P, Claeysen S, Noe F, Marchi N (2020) Peripheral routes to neurodegeneration: passing through the blood-brain barrier. Front Aging Neurosci 12:3. https://doi.org/10.3389/fnagi.2020.00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishii M, Iadecola C (2020) Risk factor for Alzheimer’s disease breaks the blood-brain barrier. Nature 581:31–32. https://doi.org/10.1038/d41586-020-01152-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Negi N, Das BK (2018) CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int Rev Immunol 37:57–68. https://doi.org/10.1080/08830185.2017.1357719

    Article  PubMed  Google Scholar 

  22. Ge R, Tornero D, Hirota M, Monni E, Laterza C, Lindvall O, Kokaia Z (2017) Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation 14:153. https://doi.org/10.1186/s12974-017-0909-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Yan G, Kong S, Wu M, Yang P, Cao W, Qiao L (2021) GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control. Nat Commun 12:6073. https://doi.org/10.1038/s41467-021-26246-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho KC, Oh S, Wang Y, Rosenthal LS, Na CH, Zhang H (2021) Evaluation of the sensitivity and reproducibility of targeted proteomic analysis using data-independent acquisition for serum and cerebrospinal fluid proteins. J Proteome Res 20:4284–4291. https://doi.org/10.1021/acs.jproteome.1c00238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  CAS  PubMed  Google Scholar 

  26. Jia X, Wang Z, Huang F, Su C, Du W, Jiang H, Wang H, Wang J, Wang F, Su W, Xiao H, Wang Y, Zhang B (2021) A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry 21:485. https://doi.org/10.1186/s12888-021-03495-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Washida K, Hattori Y, Ihara M (2019) Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. https://doi.org/10.3390/ijms20246176

    Article  PubMed  PubMed Central  Google Scholar 

  28. Satoh T, Satoh K, Yaoita N, Kikuchi N, Omura J, Kurosawa R, Numano K, Al-Mamun E, Siddique MA, Sunamura S, Nogi M, Suzuki K, Miyata S, Morser J, Shimokawa H (2017) Activated TAFI promotes the development of chronic thromboembolic pulmonary hypertension: a possible novel therapeutic target. Circ Res 120:1246–1262. https://doi.org/10.1161/CIRCRESAHA.117.310640

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Chen S, Li Y, Wang J, Yang J, Jing J, Liu X, Li Y, Wang J, Zhang P, Tang Z (2023) Effects of Dl-3-n-butylphthalide on cognitive functions and blood-brain barrier in chronic cerebral hypoperfusion rats. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-023-02530-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bai Y, Li Y, Tang Z, Hu L, Jiang X, Chen J, Huang S, Wu K, Xu W, Chen C (2022) Urinary proteome analysis of acute kidney injury in post-cardiac surgery patients using enrichment materials with high-resolution mass spectrometry. Front Bioeng Biotechnol 10:1002853. https://doi.org/10.3389/fbioe.2022.1002853

    Article  PubMed  PubMed Central  Google Scholar 

  32. He A, Wang J, Yang X, Liu J, Yang X, Wang G, Li R (2022) Screening of differentially expressed proteins in placentas from patients with late-onset preeclampsia. Proteomics Clin Appl 16:e2100053. https://doi.org/10.1002/prca.202100053

    Article  CAS  PubMed  Google Scholar 

  33. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  34. Griss J, Cote RG, Gerner C, Hermjakob H, Vizcaino JA (2011) Published and perished? The influence of the searched protein database on the long-term storage of proteomics data. Mol Cell Proteomics 10(M111):008490. https://doi.org/10.1074/mcp.M111.008490

    Article  CAS  Google Scholar 

  35. Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, Hirayama-Kurogi M, Hou G, Krisp C, Larsen B, Lin L, Liu S, Molloy MP, Moritz RL, Ohtsuki S, Schlapbach R, Selevsek N, Thomas SN, Tzeng SC, Zhang H, Aebersold R (2017) Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 8:291. https://doi.org/10.1038/s41467-017-00249-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, Vitek O (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526. https://doi.org/10.1093/bioinformatics/btu305

    Article  CAS  PubMed  Google Scholar 

  37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology: the ontology consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457-462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  PubMed  Google Scholar 

  39. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362-d368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  40. Bennett ML, Bennett FC (2020) The influence of environment and origin on brain resident macrophages and implications for therapy. Nat Neurosci 23:157–166. https://doi.org/10.1038/s41593-019-0545-6

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Jiang XJ, Wang QH, Wu XL, Qu Z, Song T, Wan WG, Zheng XX, Yi X (2022) Data-independent acquisition proteomics reveals circulating biomarkers of coronary chronic total occlusion in humans. Front Cardiovasc Med 9:960105. https://doi.org/10.3389/fcvm.2022.960105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J, Vara-Perez M, Ali L, Mampay M, Deneyer L, Miranda JF, Cai R, Bouwens L, De Bundel D, Caljon G, Stijlemans B, Massie A, Van Ginderachter JA, Vandenbroucke RE, Movahedi K (2022) Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 55(2085–2102):e2089. https://doi.org/10.1016/j.immuni.2022.09.005

    Article  CAS  Google Scholar 

  43. Sigfridsson E, Marangoni M, Hardingham GE, Horsburgh K, Fowler JH (2020) Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. J Neuroinflammation 17:367. https://doi.org/10.1186/s12974-020-02038-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayakawa K, Lo EH (2016) Brain-peripheral cell crosstalk in white matter damage and repair. Biochim Biophys Acta 1862:901–908. https://doi.org/10.1016/j.bbadis.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  45. Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CL, Lai MKP, Fann DY, Arumugam TV (2022) The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 17:4. https://doi.org/10.1186/s13024-021-00506-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang H, Qi W, Zou C, Xie Z, Zhang M, Naito MG, Mifflin L, Liu Z, Najafov A, Pan H, Shan B, Li Y, Zhu ZJ, Yuan J (2021) NEK1-mediated retromer trafficking promotes blood-brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nat Commun 12:4826. https://doi.org/10.1038/s41467-021-25157-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan M, Liu S, Sun HM, Ma MD, Gao YJ, Qi CC, Xia QR, Ge JF (2022) Bilateral intracerebroventricular injection of streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: involved with the fundamental role of neuroinflammation. Biomed Pharmacother 153:113375. https://doi.org/10.1016/j.biopha.2022.113375

    Article  CAS  PubMed  Google Scholar 

  48. Yin C, Deng Y, Liu Y, Gao J, Yan L, Gong Q (2018) Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats. Front Pharmacol 9:1211. https://doi.org/10.3389/fphar.2018.01211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY (2020) Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 10:74–90. https://doi.org/10.7150/thno.35841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. JazvinšćakJembrek M, Oršolić N, Mandić L, Sadžak A, Šegota S (2021) Anti-oxidative, anti-inflammatory and anti-apoptotic effects of flavonols: targeting Nrf2, NF-κB and p53 pathways in neurodegeneration. Antioxidants. https://doi.org/10.3390/antiox10101628

    Article  Google Scholar 

  51. Li X, Yu Q, Chen F, Tan W, Zhang Z, Ma H (2018) Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway. J Neuroinflammation 15:250. https://doi.org/10.1186/s12974-018-1271-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng P, Zuo X, Ren Y, Bai S, Tang W, Chen X, Wang G, Wang H, Huang W, Xie P (2016) Adenosine A1-receptors modulate mTOR signaling to regulate white matter inflammatory lesions induced by chronic cerebral hypoperfusion. Neurochem Res 41:3272–3277. https://doi.org/10.1007/s11064-016-2056-0

    Article  CAS  PubMed  Google Scholar 

  53. Yaoita N, Satoh K, Satoh T, Sugimura K, Tatebe S, Yamamoto S, Aoki T, Miura M, Miyata S, Kawamura T, Horiuchi H, Fukumoto Y, Shimokawa H (2016) Thrombin-activatable fibrinolysis inhibitor in chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol 36:1293–1301. https://doi.org/10.1161/ATVBAHA.115.306845

    Article  CAS  PubMed  Google Scholar 

  54. Lin J, Novakovic D, Rizzo C, Zagorac B, Garand M, Filipieva A, Koschinsky M, Boffa M (2013) The mRNA encoding TAFI is alternatively spliced in different cell types and produces intracellular forms of the protein lacking TAFIa activity. Thromb Haemost 109:1033–1044. https://doi.org/10.1160/th12-09-0668

    Article  CAS  PubMed  Google Scholar 

  55. Mertens J, Leenaerts D, Brouns R, Engelborghs S, Ieven M, De Deyn P, Lambeir A, Hendriks D (2018) Procarboxypeptidase U (proCPU, TAFI, proCPB2) in cerebrospinal fluid during ischemic stroke is associated with stroke progression, outcome and blood-brain barrier dysfunction. J Thrombosis Haemostasis 16:342–348. https://doi.org/10.1111/jth.13914

    Article  CAS  Google Scholar 

  56. Mohamed HT, El-Husseiny N, El-Ghonaimy EA, Ibrahim SA, Bazzi ZA, Cavallo-Medved D, Boffa MB, El-Shinawi M, Mohamed MM (2018) IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: the potential role of tumor infiltrated macrophages. Curr Probl Cancer 42:215–230. https://doi.org/10.1016/j.currproblcancer.2018.01.009

    Article  PubMed  Google Scholar 

  57. Yu C, Luan Y, Wang Z, Zhao J, Xu C (2017) Suppression of TAFI by siRNA inhibits invasion and migration of breast cancer cells. Mol Med Rep 16:3469–3474. https://doi.org/10.3892/mmr.2017.7031

    Article  CAS  PubMed  Google Scholar 

  58. Cai Y, Jin H, Cao LQ, Gao Q, Tao J (2017) Overexpression of TAFI promotes epithelial mesenchymal transition in endometriosis. Eur Rev Med Pharmacol Sci 21:5527

    CAS  PubMed  Google Scholar 

  59. Bengtson SH, Sanden C, Morgelin M, Marx PF, Olin AI, Leeb-Lundberg LM, Meijers JC, Herwald H (2009) Activation of TAFI on the surface of Streptococcus pyogenes evokes inflammatory reactions by modulating the kallikrein/kinin system. J Innate Immun 1:18–28. https://doi.org/10.1159/000145543

    Article  CAS  PubMed  Google Scholar 

  60. Gulliver R, Baltic S, Misso NL, Bertram CM, Thompson PJ, Fogel-Petrovic M (2011) Lys-des[Arg9]-bradykinin alters migration and production of interleukin-12 in monocyte-derived dendritic cells. Am J Respir Cell Mol Biol 45:542–549. https://doi.org/10.1165/rcmb.2010-0238OC

    Article  CAS  PubMed  Google Scholar 

  61. Che P, Zhang J, Yu M, Tang P, Wang Y, Lin A, Xu J, Zhang N (2023) Dl-3-n-butylphthalide promotes synaptic plasticity by activating the Akt/ERK signaling pathway and reduces the blood-brain barrier leakage by inhibiting the HIF-1α/MMP signaling pathway in vascular dementia model mice. CNS Neurosci Ther 29:1392–1404. https://doi.org/10.1111/cns.14112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Zhang J, Liu H, Wang J, Xin J, Deng M (2013) Changes in levels of hypoxia-induced mediators in rat hippocampus during chronic cerebral hypoperfusion. Neurochem Res 38:2433–2439. https://doi.org/10.1007/s11064-013-1158-1

    Article  CAS  PubMed  Google Scholar 

  63. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker research 2:1. https://doi.org/10.1186/2050-7771-2-1

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235. https://doi.org/10.1002/ana.10805

    Article  CAS  PubMed  Google Scholar 

  65. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670. https://doi.org/10.1126/science.1142883

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by funds from the National Natural Science Foundation of China, China (Grant No. 82171334), the Chongqing Science and Health Joint Medical Research Project, China (Grant No. 2023ZDXM016) and the Individualized training program for the excellent talent pool of the Army Medical University.

Author information

Authors and Affiliations

Authors

Contributions

WH and YW made the study design. YW and WC organized the statistical analysis and wrote the manuscript. YW, WC, and XC performed the experiments. CC and LZ assisted some of the experiments. All authors contributed to manuscript revision and approved the final manuscript.

Corresponding author

Correspondence to Wen Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Medical Ethics Committee of Second Affiliated Hospital (Xinqiao Hospital) of Army Medical University and the Laboratory Animal Welfare and Ethics Committee of Army Medical University.

Informed Consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, W., Chen, X. et al. Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion. Neurochem Res 49, 597–616 (2024). https://doi.org/10.1007/s11064-023-04050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04050-3

Keywords