Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

White matter lesions (WMLs) resulting from chronic cerebral hypoperfusion (CCH) are the leading cause of vascular dementia (VaD). This study aimed to investigate whether dipyridamole could alleviate WMLs by regulating the phenotype of disease-associated microglia (DAM) through equilibrative nucleoside transporter 2 (ENT2) and adenosine A2A receptor (Adora2a) and to clarify the underlying molecular mechanisms. CCH rat models were constructed to mimic VaD. Morris water maze and Luxol Fast Blue staining were employed to assess cognitive function and quantify the severity of WMLs, respectively. Immunofluorescent staining was performed to analyze the activation of glial cells and the phenotypic transformation of DAM. Additionally, levels of ENT2, proteins in the NF-κB and ERK1/2 pathways and inflammatory cytokines were detected. The results indicated that dipyridamole diminished the activation and proliferation of microglia and astrocytes, increased the expression of myelin basic protein and ameliorated WMLs and cognitive decline in CCH rats. Further study revealed that dipyridamole decreased the expression of ENT2 and inhibited the activation of ERK1/2 and NF-κB signaling pathways, which ultimately converted DAM to anti-inflammatory phenotype and suppressed the levels of TNF-α, IL-1β, IL-6 in WMLs. However, Adora2a inhibitor (SCH58261) attenuated above effects. Our study demonstrates that dipyridamole facilitates the conversion of DAM to the anti-inflammatory phenotype through ENT2/Adora2a pathway and inhibits the activation of ERK1/2 and NF-κB signaling pathways, thereby alleviating neuroinflammation in WMLs. The current findings establish the basis for using dipyridamole to treat VaD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used in our study are available from the corresponding author upon reasonable request.

References

  1. O’Brien JT, Thomas A (2015) Vascular dementia. Lancet 386:1698–1706. https://doi.org/10.1016/S0140-6736(15)00463-8

    Article  PubMed  Google Scholar 

  2. Kalaria RN (2018) The pathology and pathophysiology of vascular dementia. Neuropharmacology 134:226–239. https://doi.org/10.1016/j.neuropharm.2017.12.030

    Article  CAS  PubMed  Google Scholar 

  3. Zhao C, Liang Y, Chen T, Zhong Y, Li X, Wei J, Li C, Zhang X (2020) Prediction of cognitive performance in old age from spatial probability maps of white matter lesions. Aging 12:4822–4835. https://doi.org/10.18632/aging.102901

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP, Chen CL, Drummond GR, Sobey CG, Arumugam TV (2022) Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics 12:1639–1658. https://doi.org/10.7150/thno.68304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina capital AC (2022) Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 75:101715. https://doi.org/10.1016/j.tice.2021.101715

    Article  CAS  PubMed  Google Scholar 

  6. Washida K, Hattori Y, Ihara M (2019) Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. https://doi.org/10.3390/ijms20246176

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang LY, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, Shi R, Tu X, Jin K, Wang Y, Zhang Z, Yang GY (2020) Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics 10:74–90. https://doi.org/10.7150/thno.35841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao CY, Yang YX, Xie Z, Chen X, Shi XW, Yin X, Gao JM (2022) Derivatives of sarcodonin a isolated from Sarcodon scabrosus reversed LPS-induced M1 polarization in microglia through MAPK/NF-kappaB pathway. Bioorg Chem 125:105854. https://doi.org/10.1016/j.bioorg.2022.105854

    Article  CAS  PubMed  Google Scholar 

  9. Schwabenland M, Bruck W, Priller J, Stadelmann C, Lassmann H, Prinz M (2021) Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathol 142:923–936. https://doi.org/10.1007/s00401-021-02370-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081. https://doi.org/10.1016/j.cell.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  11. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(1276–1290):e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  Google Scholar 

  12. Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, Bolte AC, Lammert CR, Kulas JA, Ulland TK, Lukens JR (2022) SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 185(4135–4152):e4122. https://doi.org/10.1016/j.cell.2022.09.030

    Article  CAS  Google Scholar 

  13. Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, Duong DM, Pennington MW, Lah JJ, Seyfried NT, Levey AI (2018) Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener 13:24. https://doi.org/10.1186/s13024-018-0254-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J (2020) Animal models of cerebral ischemia: a review. Biomed Pharmacother 131:110686. https://doi.org/10.1016/j.biopha.2020.110686

    Article  CAS  PubMed  Google Scholar 

  15. Grane-Boladeras N, Williams D, Tarmakova Z, Stevanovic K, Villani LA, Mehrabi P, Siu KWM, Pastor-Anglada M, Coe IR (2019) Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1. Faseb J 33:3841–3850. https://doi.org/10.1096/fj.201800440RR

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Cheng C, Zuo X, Cheng W, Chen X, Dong K, Yu Z, Zhang L, Huang W (2022) Inhibition of A2AR gene methylation alleviates white matter lesions in chronic cerebral hypoperfusion rats. Eur Rev Med Pharmacol Sci 26:2702–2711. https://doi.org/10.26355/eurrev_202204_28600

    Article  PubMed  Google Scholar 

  17. Duan W, Ran H, Zhou Z, He Q, Zheng J (2012) Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion. PLoS ONE 7:e52566. https://doi.org/10.1371/journal.pone.0052566

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Aliter KF, Al-Horani RA (2021) Potential therapeutic benefits of dipyridamole in COVID-19 patients. Curr Pharm Des 27:866–875. https://doi.org/10.2174/1381612826666201001125604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang W, Chen N, Ren D, Davies J, Philip K, Eltzschig H, Blackburn M, Akkanti B, Karmouty-Quintana H, Weng T (2021) Enhancing extracellular adenosine levels restores barrier function in acute lung injury through expression of focal adhesion proteins. Front Mol Biosci 8:636678. https://doi.org/10.3389/fmolb.2021.636678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Puri N, Mohey V, Singh M, Kaur T, Pathak D, Buttar H, Singh A (2016) Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats. Naunyn Schmiedebergs Arch Pharmacol 389:361–368. https://doi.org/10.1007/s00210-015-1206-2

    Article  CAS  PubMed  Google Scholar 

  21. Ma SM, Wang L, Su XT, Yang NN, Huang J, Lin LL, Shao JK, Yang JW, Liu CZ (2020) Acupuncture improves white matter perfusion and integrity in rat model of vascular dementia: an MRI-based imaging study. Front Aging Neurosci 12:582904. https://doi.org/10.3389/fnagi.2020.582904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie X, Lu W, Chen Y, Tsang CK, Liang J, Li W, Jing Z, Liao Y, Huang L (2019) Prostaglandin E1 alleviates cognitive dysfunction in chronic cerebral hypoperfusion rats by improving hemodynamics. Front Neurosci 13:549. https://doi.org/10.3389/fnins.2019.00549

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ran H, Duan W, Gong Z, Xu S, Zhu H, Hou X, Jiang L, He Q, Zheng J (2015) Critical contribution of adenosine A2A receptors in bone marrow-derived cells to white matter lesions induced by chronic cerebral hypoperfusion. J Neuropathol Exp Neurol 74:305–318. https://doi.org/10.1097/nen.0000000000000174

    Article  CAS  PubMed  Google Scholar 

  24. Li T, Zheng J, Wang Z, Xu L, Sun D, Song H, Wu S, Du M, Peng S, Zhang J (2022) Maresin 1 improves cognitive decline and ameliorates inflammation and blood-brain barrier damage in rats with chronic cerebral hypoperfusion. Brain Res 1788:147936. https://doi.org/10.1016/j.brainres.2022.147936

    Article  CAS  PubMed  Google Scholar 

  25. Huang W, Bai S, Zuo X, Tang W, Chen P, Chen X, Wang G, Wang H, Xie P (2018) An adenosine A1R–A2aR imbalance regulates low glucose/hypoxia-induced microglial activation, thereby contributing to oligodendrocyte damage through NF-κB and CREB phosphorylation. Int J Mol Med 41:3559–3569. https://doi.org/10.3892/ijmm.2018.3546

    Article  CAS  PubMed  Google Scholar 

  26. Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK (2022) The hypoxia-adenosine link during myocardial ischemia-reperfusion injury. Biomedicines. https://doi.org/10.3390/biomedicines10081939

    Article  PubMed  PubMed Central  Google Scholar 

  27. Naes SM, Ab-Rahim S, Mazlan M, Abdul Rahman A (2020) Equilibrative nucleoside transporter 2: properties and physiological roles. Biomed Res Int 2020:5197626. https://doi.org/10.1155/2020/5197626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P (2023) Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 442:114301. https://doi.org/10.1016/j.bbr.2023.114301

    Article  CAS  PubMed  Google Scholar 

  29. Gao T, Jernigan J, Raza SA, Dammer EB, Xiao H, Seyfried NT, Levey AI, Rangaraju S (2019) Transcriptional regulation of homeostatic and disease-associated-microglial genes by IRF1, LXRbeta and CEBPalpha. Glia 67:1958–1975. https://doi.org/10.1002/glia.23678

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CL, Lai MKP, Fann DY, Arumugam TV (2022) The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 17:4. https://doi.org/10.1186/s13024-021-00506-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waller R, Narramore R, Simpson JE, Heath PR, Verma N, Tinsley M, Barnes JR, Haris HT, Henderson FE, Matthews FE, Richardson CD, Brayne C, Ince PG, Kalaria RN, Wharton SB, Cfas (2021) Heterogeneity of cellular inflammatory responses in ageing white matter and relationship to Alzheimer’s and small vessel disease pathologies. Brain Pathol 31:e12928. https://doi.org/10.1111/bpa.12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esin RG, Safina DR, Khakimova AR, Esin OR (2022) Neuroinflammation and neuropathology. Neurosci Behav Physiol 52:196–201. https://doi.org/10.1007/s11055-022-01223-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu KC, Lee CY, Chou FY, Chern Y, Lin CJ (2020) Deletion of equilibrative nucleoside transporter-2 protects against lipopolysaccharide-induced neuroinflammation and blood-brain barrier dysfunction in mice. Brain Behav Immun 84:59–71. https://doi.org/10.1016/j.bbi.2019.11.008

    Article  PubMed  Google Scholar 

  34. Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM (2022) The translational potential of microglia and monocyte-derived macrophages in ischemic stroke. Front Immunol 13:897022. https://doi.org/10.3389/fimmu.2022.897022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li C, Chen YH, Zhang K (2020) Neuroprotective properties and therapeutic potential of bone marrow-derived microglia in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 35:1533317520927169. https://doi.org/10.1177/1533317520927169

    Article  PubMed  Google Scholar 

  36. Guo Y, Liu C, Zhang J, Tian B, Wang L, Liu G, Liu Y (2020) A relationship between MAPK/ERK pathway expression and neuronal apoptosis in rats with white matter lesions. Eur Rev Med Pharmacol Sci 24:4412–4419. https://doi.org/10.26355/eurrev_202004_21023

    Article  CAS  PubMed  Google Scholar 

  37. Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H (2020) Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 17:89. https://doi.org/10.1186/s12974-020-01761-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamed O, Joshi R, Michi A, Kooi C, Giembycz M (2021) β -adrenoceptor agonists promote extracellular signal-regulated kinase 1/2 dephosphorylation in human airway epithelial cells by canonical, cAMP-driven signaling independently of -arrestin 2. Mol Pharmacol 100:388–405. https://doi.org/10.1124/molpharm.121.000294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China, China (Grant No. 82171334), the Chongqing Science and Health Joint Medical Research Project, China (Grant No. 2023ZDXM016), and the Individualized training program for the excellent talent pool of the Army Medical University.

Author information

Authors and Affiliations

Authors

Contributions

W.H. contributed to the conception and design of the study. W.C. and Y.W. organized the database and wrote the manuscript. W.C., Y.W. and L.Z. performed the statistical analysis. C.C. and X.C. participated in some experimental operations. All authors contributed to the manuscript revision and approved the submitted version.

Corresponding author

Correspondence to Wen Huang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

The Laboratory Animal Welfare and Ethics Committee of Third Military Medical University sanctioned all animal operations, and all experiments were conducted following the applicable guidelines and regulations. Ethical Approval Number: AMUWEC20210276. Additionally, all methods are reported under ARRIVE guidelines for reporting animal experiments.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7220 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Wang, Y., Zhang, L. et al. The Impact of Dipyridamole on Disease-Associated Microglia Phenotypic Transformation in White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 49, 744–757 (2024). https://doi.org/10.1007/s11064-023-04066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04066-9

Keywords