Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Groundwater chlorinated solvent plumes remediation from the past to the future: a scientometric and visualization analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Contamination of groundwater with chlorinated hydrocarbons has serious adverse effects on human health. As research efforts in this area have expanded, a large body of literature has accumulated. However, traditional review writing suffers from limitations regarding efficiency, quantity, and timeliness, making it difficult to achieve a comprehensive and up-to-date understanding of developments in the field. There is a critical need for new tools to address emerging research challenges. This study evaluated 1619 publications related to this field using VOSviewer and CiteSpace visual tools. An extensive quantitative analysis and global overview of current research hotspots, as well as potential future research directions, were performed by reviewing publications from 2000 to 2022. Over the last 22 years, the USA has produced the most articles, making it the central country in the international collaboration network, with active cooperation with the other 7 most productive countries. Additionally, institutions have played a positive role in promoting the publication of science and technology research. In analyzing the distribution of institutions, it was found that the University of Waterloo conducted the majority of research in this field. This paper also identified the most productive journals, Environmental Science & Technology and Applied and Environmental Microbiology, which published 11,988 and 3253 scientific articles over the past 22 years, respectively. The main technologies are bioremediation and chemical reduction, which have garnered growing attention in academic publishing. Our findings offer a useful resource and a worldwide perspective for scientists engaged in this field, highlighting both the challenges and the possibilities associated with addressing groundwater chlorinated solvent plumes remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References 

  • Ai J, Tobler DJ, Duncan-Jones CG, Manniche ME, AnderssonHansen KEHCB (2021) Chlorinated solvent degradation in groundwater by green rust-bone char composite: solute interactions and chlorinated ethylene competition. Environ Sci-Wat Res Technol 7:2043–2053. https://doi.org/10.1039/d1ew00484k

    Article  CAS  Google Scholar 

  • Akbari M, Khodayari M, Danesh M (2020) Davari AandPadash H (2020) A bibliometric study of sustainable technology research. Cogent Business & Management 710(1080/23311975):1751906

    Google Scholar 

  • Alamooti A, Colombano S, Omirbekov S, Ahmadi A, Lion F, Davarzani H (2022) Influence of the injection of densified polymer suspension on the efficiency of DNAPL displacement in contaminated saturated soils. J Hazard Mater 440:129702

    CAS  PubMed  Google Scholar 

  • Alamooti A, Colombano S, Glabe ZA, LionDavarzani FD, Ahmadi-Sénichault A (2023) Remediation of Multilayer Soils Contaminated by Heavy Chlorinated Solvents Using Biopolymer-Surfactant Mixtures: Two-Dimensional Flow Experiments and Simulations. Water Res 243:120305

    CAS  PubMed  Google Scholar 

  • Allmon WE, Everett LG, Lightner AT, Alleman B, Boyd TJ, Spargo BJGCWTA (1999) Groundwater circulating well technology assessment. Water Pollut Cont. https://doi.org/10.21236/ada583026

  • Alvarez-Cohen L, McCarty PL (1991) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol 57:228–235. https://doi.org/10.1128/aem.57.1.228-235.1991

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Amon JP, Agrawal A, Shelley ML, Opperman BC, Enright MP, Clemmer ND, Slusser T, Lach J, Sobolewski T, Gruner W, Entingh AC (2007) Development of a wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecol Eng 30:51–66. https://doi.org/10.1016/j.ecoleng.2007.01.008

    Article  Google Scholar 

  • Attarian P, Mokhtarani N (2021) Feasibility Study of Aerobic Cometabolism Biodegradation of MTBE by a Microbial Consortium: Biomass Growth and Decay Rate. J Water Proc Eng 44:102338

    Google Scholar 

  • Atteia O, Del Campo EE (2013) Bertin HJRiESandBio/Technology. Soil Flushing: a Rev Origin Efficiency Var 12:379–389

    CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:1–18

    CAS  Google Scholar 

  • Balderacchi M, Benoit P, CambierEklo POM, Gargini A, Gemitzi A, Gurel M, Klove B, Nakic Z, PredaRuzicic ES, Wachniew P, Trevisan M (2013) Groundwater pollution and quality monitoring approaches at the European level. Crit Rev Environ Sci Technol 43:323–408. https://doi.org/10.1080/10643389.2011.604259

    Article  CAS  Google Scholar 

  • Baldwin BR, Taggart D, Chai Y, Wandor D, Biernacki A, Sublette KL, Wilson JT, Walecka-HutchisonColadonato CC, Goodwin B (2017) Bioremediation management reduces mass discharge at a chlorinated DNAPL site. Ground Water Monit Remediat 37:58–70. https://doi.org/10.1111/gwmr.12211

    Article  CAS  Google Scholar 

  • Bass DH, Hastings NA, Brown RA (2000) Performance of air sparging systems: a review of case studies. J Hazard Mater 72:101–119

    CAS  PubMed  Google Scholar 

  • Batagelj V, Mrvar A (2001): Pajek - Analysis and visualization of large networks. Math Visual 77–103. https://doi.org/10.1007/978-3-642-18638-7_4

  • Broholm MM, Hunkeler D, Tuxen N, Jeannottat S, Sheutz C (2014) Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments. Chemosphere 108:265–273. https://doi.org/10.1016/j.chemosphere.2014.01.051

    Article  CAS  PubMed  ADS  Google Scholar 

  • Brusseau ML, Narter M (2013) Assessing the impact of chlorinated-solvent sites on metropolitan groundwater resources. Ground Water 51:828–832. https://doi.org/10.1111/gwat.12126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner D, Schweikhart M, Behrens S, Schondorf T, Laskov C, Haderlein SB (2019) Stimulation of anaerobic PCE dechlorinating bacteria in amacroscopic oxic aquifer. Grundwasser 24:51–63. https://doi.org/10.1007/s00767-018-00410-x

    Article  ADS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241–268. https://doi.org/10.1007/s10098-010-0319-z

    Article  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241–268

    Google Scholar 

  • Carroll KC, Oostrom M, Truex MJ, Rohay VJ, Brusseau ML (2012) Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality. J Contam Hydrol 128:71–82

    CAS  PubMed  Google Scholar 

  • Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J Contam Hydrol 112:77–90. https://doi.org/10.1016/j.jconhyd.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Liu MZ, Li HY, Liu S (2003) Column experiments of TCE and PCE transport and transformation in groundwater. Int Symp Water Resour Urban Environ 3:155–158

  • Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Amer Soc Inform Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

    Article  Google Scholar 

  • Chow SJ, Lorah MM, Wadhawan AR, Durant ND, Bouwer EJ (2020) Sequential biodegradation of 1,2,4-trichlorobenzene at oxic-anoxic groundwater interfaces in model laboratory columns. Journal of Contaminant Hydrology 231. https://doi.org/10.1016/j.jconhyd.2020.103639.

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A (2001) Albrechtsen H-JandHeron GJAg. Biogeochem Landfill Leachate Plumes 16:659–718

    CAS  Google Scholar 

  • Ciampi P, Esposito C, Bartsch E, Alesi EJ, Papini MP (2021) 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site. Sci Total Environ 793:148649

    CAS  PubMed  ADS  Google Scholar 

  • Ciampi P, Esposito C, Bartsch E, Alesi EJ, Nielsen C, Ledda L, Lorini L, Papini MP (2022) Coupled hydrogeochemical approach and sustainable technologies for the remediation of a chlorinated solvent plume in an urban area. Sustainability 14. https://doi.org/10.3390/su141610317.

  • Ciampi P, Esposito C, Bartsch E, Alesi EJ, Papini MP (2023) Pump-and-treat (P&T) vs groundwater circulation wells (GCW): which approach delivers more sustainable and effective groundwater remediation? Environ Res 234:116538

    CAS  PubMed  Google Scholar 

  • Ciampi P, Esposito C, Papini MP (2023) Review on groundwater circulation wells (GCWs) for aquifer remediation: state of the art, challenges, and future prospects. Groundw Sustain Dev 24:101068. https://doi.org/10.1016/j.gsd.2023.101068

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168. https://doi.org/10.2307/3434854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drogui P, Blais J-F, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recents Patents Eng 1:257–272

    CAS  Google Scholar 

  • Du YH, Yang RY, Wang Q, Wang LY, Liang LC, Zhu L, Sun Y, Cai M (2021) Bibliometric analysis study on the mechanisms of brain energy metabolism disorders in Alzheimer's disease from 2000 to 2020. Frontiers in Neurology 12. https://doi.org/10.3389/fneur.2021.670220.

  • Elango V, Cashwell JM, Bellotti MJ, Marotte R, Freedman DL (2010) Bioremediation of hexachlorocyclohexane isomers, chlorinated benzenes, and chlorinated ethenes in soil and fractured dolomite. Bioremediat J 14:10–27. https://doi.org/10.1080/10889860903463695

    Article  CAS  Google Scholar 

  • Elmore AC, Hellman JB (2001) Model-predicted groundwater circulation well performance. Pract Period Hazard Toxic Radiact Waste Manag 5:203–210

    Google Scholar 

  • Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51:4861–4902. https://doi.org/10.1002/2015wr017121

    Article  CAS  ADS  Google Scholar 

  • Fan S, Xin J, Huang J, Rong X, Zheng W (2018) Effectiveness of electron transfer and electron competition mechanism in zero-valent iron-based reductive groundwater remediation systems. Prog Chem 30:1035–1046. https://doi.org/10.7536/pc171106

    Article  CAS  Google Scholar 

  • Ferguson JF, Pietari JMH (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107:209–215. https://doi.org/10.1016/s0269-7491(99)00139-6

    Article  CAS  PubMed  Google Scholar 

  • Ferrey ML, Wilkin RT, Ford RG, Wilson JT (2004) Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752. https://doi.org/10.1021/es0305609

    Article  CAS  PubMed  ADS  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J hazard Mater 283:382–399

    CAS  PubMed  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399. https://doi.org/10.1016/j.jhazmat.2014.09.041

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang W, Rondinone AJ, He F, Liang LY (2015) Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite. J Hazard Mater 300:443–450. https://doi.org/10.1016/j.jhazmat.2015.07.038

    Article  CAS  PubMed  Google Scholar 

  • Garcia AN, Boparai HK, Chowdhury AIA, de Boer CV, Kocur CMD, Passeport E, Lollar BS, Austrins LM, Herrera Ja, O’Carroll DM (2020) Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: a field study. Water Res 174. https://doi.org/10.1016/j.watres.2020.115594

  • Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A (2019) Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. Water Res 151:343–348

    CAS  PubMed  Google Scholar 

  • Geng Z, Liu B, Li G, Zhang F (2021) Enhancing DNAPL removal from low permeability zone using electrical resistance heating with pulsed direct current. J Hazard Mater 413:125455

    CAS  PubMed  Google Scholar 

  • Gregor S, Fallahpour N, Rajic L, Alshawabkeh A (2016) Electrochemical remediation of contaminated groundwater: pilot scale study. Karst Groundw Contamin Public Health 117–120. https://doi.org/10.1007/978-3-319-51070-5_12

  • Guerra P, Bauer A, Reiss RA, McCord J (2021) In situ bioremediation of a chlorinated hydrocarbon plume: a superfund site field pilot test. Applied Sciences-Basel 11. https://doi.org/10.3390/app11211000.

  • Guleria S, Chakma A (2022) A bibliometric and visual analysis of contaminant transport modeling in the groundwater system: current trends, hotspots, and future directions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24370-1

    Article  Google Scholar 

  • Haack SK, Bekins BA (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63

    ADS  Google Scholar 

  • Hadley PW, Newell CJ (2012) Groundwater remediation: the next 30 years. Ground Water 50:669–678. https://doi.org/10.1111/j.1745-6584.2012.00942.x

    Article  CAS  PubMed  Google Scholar 

  • Herrero J, Puigserver D, Nijenhuis I, Kuntze JM, Carmona K (2022) Key factors controlling microbial distribution on a DNAPL source area. Environ Sci Pollut Res 29:1508–1520. https://doi.org/10.1007/s11356-021-15635-2

    Article  Google Scholar 

  • Hoag GE, Marley MC, Cliff BL, Nangeroni P (2023) Soil vapor extraction research developments. Hydrocarb Contamin Soils Groundw 1:187–202. https://doi.org/10.1201/9780203751572-18

    Article  Google Scholar 

  • Hou DY, Al-Tabbaa A, O’Connor D, Hu Q, Zhu YG, Wang LW, Kirkwood N, Ok YS, Tsang DCW, Bolan NS, Rinklebe J (2023) Sustainable remediation and redevelopment of brownfield sites. Nature Rev Earth Environ 4:271–286. https://doi.org/10.1038/s43017-023-00404-1

    Article  CAS  ADS  Google Scholar 

  • Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33(16):2733–2738. https://doi.org/10.1021/es981282u

    Article  CAS  ADS  Google Scholar 

  • Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HM (2022) In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air–A review. Chemosphere 289:133252

    CAS  PubMed  Google Scholar 

  • Inglis AM, Head NA, Chowdhury AIA, Garcia AN, Reynolds DA, Hogberg D, Edwards E, Lomheim L, Weber K, Wallace SJ, Austrins LM, Hayman J, Auger M, Sidebottom A, Eimers J, Gerhard JI, O’Carroll DM (2021) Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation. Water Research 201. https://doi.org/10.1016/j.watres.2021.117305

  • Islam S, Redwan A, Millerick K, Filip J, Fan LF, Yan WL (2021) Effect of copresence of zerovalent iron and sulfate reducing bacteria on reductive dechlorination of trichloroethylene. Environ Sci Technol 55:4851–4861. https://doi.org/10.1021/acs.est.0c07702

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jackson RE, Dwarakanath V (1999) Chlorinated degreasing solvents: physical-chemical properties affecting aquifer contamination and remediation. Ground Water Monit Remediat 19:102–110. https://doi.org/10.1111/j.1745-6592.1999.tb00246.x

    Article  CAS  Google Scholar 

  • Jin LL, Sun XZ, Ren HQ, Huang H (2023) Hotspots and trends of biological water treatment based on bibliometric review and patents analysis. J Environ Sci 125:774–785. https://doi.org/10.1016/j.jes.2022.03.037

    Article  Google Scholar 

  • Johnson RL, Johnson P, McWhorter D, Hinchee R, Goodman I (1993) An overview of in situ air sparging. Groundwater Monitor Remediat 13:127–135

    CAS  Google Scholar 

  • Kao CM, Prosser J (1999) Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies. J Hazard Mater 69:67–79. https://doi.org/10.1016/s0304-3894(99)00060-6

    Article  CAS  PubMed  Google Scholar 

  • Kennedy LG, Everett JW, Gonzales J (2006) Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma. J Contaminant Hydrol 83:221–236. https://doi.org/10.1016/j.jconhyd.2005.11.006

    Article  CAS  ADS  Google Scholar 

  • Kennedy LG, Everett JW, Becvar E, DeFeo D (2006) Field-scale demonstration of induced biogeochemical reductive dechlorination at Dover Air Force Base, Dover, Delaware. J Contam Hydrol 88:119–136. https://doi.org/10.1016/j.jconhyd.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM (2022) Emerging contaminants of high concern for the environment: current trends and future research. Environ Res 207. https://doi.org/10.1016/j.envres.2021.112609

  • Kokkoli A, Agerholm N, Andersen HR, Kaarsholm KM (2021) Synergy between ozonation and GAC filtration for chlorinated ethenes-contaminated groundwater treatment. J Water Process Eng 44:102356

    Google Scholar 

  • Krembs FJ, Siegrist RL, Crimi ML, Furrer RF, Petri BG (2010) ISCO for groundwater remediation: analysis of field applications and performance. Groundwater Monitor Remediat 30:42–53

    Google Scholar 

  • Krug T, O'Hara S, Watling M, Quinn J (2010) Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas. https://doi.org/10.21236/ada571690

  • Kubal M, Janda V, Benes P, Hendrych J (2008) In situ chemical oxidation and its application to remediation of contaminated soil and groundwater. Chem Listy 102:493–499

    CAS  Google Scholar 

  • Kueper BH, Stroo HF, Vogel CM, Ward CH (2014) Chlorinated solvent source zone remediation. Springer

    Google Scholar 

  • Lai A, Aulenta F, Mingazzini M, Palumbo MT, Papini MP, Verdini R, Majone M (2017) Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere 169:351–360. https://doi.org/10.1016/j.chemosphere.2016.11.072

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lai A, Astolfi ML, Bertelli V, Agostinelli VG, Zeppilli M, Majone M (2021) Chromate fate and effect in bioelectrochemical systems for remediation of chlorinated solvents. New Biotechnol 60:27–35. https://doi.org/10.1016/j.nbt.2020.06.006

    Article  CAS  Google Scholar 

  • Li X, Wu P, Shen GQ, Wang X, Teng Y (2017) Mapping the knowledge domains of Building Information Modeling (BIM): a bibliometric approach. Autom Constr 84:195–206. https://doi.org/10.1016/j.autcon.2017.09.011

    Article  Google Scholar 

  • Li X, Li Z, Du C, Tian Z, Zhu Q, Li G, Shen Q, LiLi CJ, Li W, Zhao C, Zhang L (2021) Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019. Environ Sci Pollut Res 28:34200–34210. https://doi.org/10.1007/s11356-021-13847-0

    Article  CAS  Google Scholar 

  • Liu M-H, Hsiao C-M, Lin C-E, Leu J (2021) Application of combined in situ chemical reduction and enhanced bioremediation to accelerate TCE treatment in groundwater. Applied Sciences-Basel 11. https://doi.org/10.3390/app11188374.

  • Lorah MM, Vogler E, Gebhardt FE, Graves D, Grabowski JF (2022) Enhanced bioremediation of RDX and Co-contaminants perchlorate and nitrate using an anaerobic dehalogenating consortium in a fractured rock aquifer. Chemosphere 294. https://doi.org/10.1016/j.chemosphere.2022.133674.

  • Malaguerra F, Chambon JC, Bjerg PL, Scheutz C, Binning PJ (2011) Development and sensitivity analysis of a fully kinetic model of sequential reductive dechlorination in groundwater. Environ Sci Technol 45:8395–8402

    CAS  PubMed  ADS  Google Scholar 

  • Manamsa K, Crane E, Stuart M, Talbot J, Lapworth D, Hart A (2016) A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci Total Environ 568:712–726. https://doi.org/10.1016/j.scitotenv.2016.03.017

    Article  CAS  PubMed  ADS  Google Scholar 

  • Markscheffel F, Schroter B (2021) Comparison of two science mapping tools based on software technical evaluation and bibliometric case studies. Collnet J Scientometrics Inf Manag 15:365–396. https://doi.org/10.1080/09737766.2021.1960220

    Article  Google Scholar 

  • Marley MC, Hazebrouck DJ, Remediation Walsh MT (1992) The application of in situ air sparging as an innovative soils and ground water remediation technology. Groundwater Monitor Remediat 12:137–145

    CAS  Google Scholar 

  • Martino LE, Dona CL, Dicerbo J, Hawkins A, Moore B, Horner R (2016) Green and sustainable remediation practices in Federal Agency cleanup programs. Environ Earth Sci 75. https://doi.org/10.1007/s12665–016–6219–8.

  • McCray JE, Falta RW (1996) Defining the air sparging radius of influence for groundwater remediation. J Contaminant Hydrol 24:25–52

    CAS  ADS  Google Scholar 

  • McGuire JT, Smith EW, Long DT, Hyndman DW, Haack SK, Klug MJ, Velbel MA (2000) Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chemical Geol 169:471–485. https://doi.org/10.1016/s0009-2541(00)00223-0

    Article  CAS  ADS  Google Scholar 

  • Miao Z, Brusseau ML, Carroll KC, Carreon-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34:539–550. https://doi.org/10.1007/s10653-011-9423-1

    Article  CAS  PubMed  Google Scholar 

  • Mravik SC, Sillan RK, Wood AL, Sewell GW (2003) Field evaluation of the solvent extraction residual biotreatment technology. Environ Sci Technol 37:5040–5049. https://doi.org/10.1021/es034039q

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Mulligan CN, Yong R, Gibbs B (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Google Scholar 

  • Mwegoha WJ (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. J Sustain Dev Africa 10:140–156

    Google Scholar 

  • Ndong LBB, Ibondou MP, Miao ZW, Gu XG, Lu SG, Qiu ZF, Sui Q, Mbadinga SM (2014) Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase. J Environ Sci 26:1188–1194. https://doi.org/10.1016/s1001-0742(13)60541-0

    Article  CAS  Google Scholar 

  • Nemecek J, Nechanicka M, Spanek R, Eichler F, Zeman J, Cernik M (2019) Engineered in situ biogeochemical transformation as a secondary treatment following ISCO - a field test. Chemosphere 237. https://doi.org/10.1016/j.chemosphere.2019.124460

  • Newman L (2007) Phytoremediation of contaminated groundwater, NATO advanced research workshop on application of phytotechnologies for cleanup of industrial, agricultural and wastewater contamination. Appl Phytotechnol Clean Industr Agric Wastewater Contamin 177–187. https://doi.org/10.1007/978-90-481-3592-9_12

  • Niosi J, Bas TG (2001) The competencies of regions–Canada’s clusters in biotechnology. Small Bus Econ 17:31–42

    Google Scholar 

  • Noel V, Boye K, Kukkadapu RK, Bone S, Pacheco JSL, Cardarelli E, Janot N, Fendorf S, Williams KH, Bargar JR (2017) Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Sci Total Environ 603:663–675. https://doi.org/10.1016/j.scitotenv.2017.01.109

    Article  CAS  PubMed  ADS  Google Scholar 

  • O’Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, Tack FM (2018) Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J Controlled Release 283:200–213

    Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–26. https://doi.org/10.1128/aem.55.11.2819-2826.1989

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ottosen CB, Rønde V, McKnight US, Annable MD, Broholm MM, Devlin JF, Bjerg PL (2020) Natural attenuation of a chlorinated ethene plume discharging to a stream: Integrated assessment of hydrogeological, chemical and microbial interactions. Water Res 186:116332

    CAS  PubMed  Google Scholar 

  • Ottosen CB, Bjerg PL, Hunkeler D, Zimmermann J, Tuxen N, Harrekilde D, Bennedsen L, Leonard G, Brabæk L, Kristensen IL (2021) Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: application of isotopic and microbial analyses. J Contaminant Hydrol 240:103794

    CAS  Google Scholar 

  • Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Sabry S, Rinklebe J, O’Connor D, Lamb D, Wang H (2023) Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. J Hazard Mater 455:131575. https://doi.org/10.1016/j.jhazmat.2023.131575

  • Pant S, Pant P (2010) A review: advances in microbial remediation of trichloroethylene (TCE). J Environ Sci 22:116–126. https://doi.org/10.1016/s1001-0742(09)60082-6

    Article  CAS  Google Scholar 

  • Pennell KD, Cápiro NL, Walker DI (2014) Surfactant and cosolvent flushing. Chloride Solv Sour Zone Remediat 7:353–394. https://doi.org/10.1007/978-1-4614-6922-3_11

    Article  Google Scholar 

  • Petri BG, Thomson NR, Urynowicz MA (2011) Fundamentals of ISCO using permanganate. Situ Chem Oxid Groundw Remediat 3:89–146. https://doi.org/10.1007/978-1-4419-7826-4_3

    Article  Google Scholar 

  • Puigserver D, Herrero J, Nogueras X, Cortes A, Parker BL, Playa E, Carmona JM (2022) Biotic and abiotic reductive dechlorination of chloroethenes in aquitards. Sci Total Environ 816. https://doi.org/10.1016/j.scitotenv.2021.151532

  • Qin CY, Zhao YS, Su Y, Zheng W (2013) Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction. Water Environ Res 85:133–140. https://doi.org/10.2175/106143012X13560205144173

    CAS  PubMed  Google Scholar 

  • Quante M, Ebinghaus R, Flöser G (2011) Persistent pollution–past, present and future: school of environmental research-organized by Helmholtz-Zentrum Geesthacht. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-17419-3

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar T, Holdsworth A (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318. https://doi.org/10.1021/es0490018

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rao PSC, Annable MD, Sillan RK, Dai D, Hatfield K, Graham WD, Wood AL, Enfield CG (1997) Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resource Res 33:2673–2686

    ADS  Google Scholar 

  • Reddy KR, Cameselle C (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater. John Wiley & Sons

    Google Scholar 

  • Rivett MO, Thornton SF (2008) Monitored natural attenuation of organic contaminants in groundwater: principles and application. Proc Instit Civil Eng-Water Manag 161:381–392. https://doi.org/10.1680/wama.2008.161.6.381

    Article  Google Scholar 

  • Romano AM, Silfer BE (1999) Current technical and regulatory developments. Environ Claims J 12:89–98. https://doi.org/10.1080/10406020009355117

    Article  Google Scholar 

  • Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, Papini MP (2021) Combined strategies to prompt the biological reduction of chlorinated aliphatic hydrocarbons: new sustainable options for bioremediation application. Bioengineering-Basel 8. https://doi.org/10.3390/bioengineering8080109

  • Rossi MM, Dell’Armi E, Lorini L, Amanat N, Zeppilli M, Villano M, PetrangeliPapini M (2021) Combined strategies to prompt the biological reduction of chlorinated aliphatic hydrocarbons: new sustainable options for bioremediation application. Bioengineering 8:109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rügner H, Finkel M, Kaschl A, Bittens M (2006) Application of monitored natural attenuation in contaminated land management—a review and recommended approach for Europe. Environ Sci Policy 9:568–576

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annual review of plant physiology and plant molecular biology. Annual Rev Plant Biol 49:643–668. https://doi.org/10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  • Schaefer CE, Lavorgna GM, Haluska AA, Annable MD (2018) Long-term impacts on groundwater and reductive dechlorination following bioremediation in a highly characterized trichloroethene DNAPL source area. Groundwater Monitor Remediation 38:65–74

    CAS  Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Rev Microbiol 26:221–264. https://doi.org/10.1080/10408410091154237

    Article  CAS  Google Scholar 

  • Sethi R, Di Molfetta A (2019) Remediation of contaminated groundwater. In: Groundwater Engineering. Springer Tracts in Civil Engineering. Springer, Cham, pp 331-409. https://doi.org/10.1007/978-3-030-20516-4_17

  • Sharma P, Kostarelos K, Lenschow S, Christensen A, de Blanc PC (2020) Surfactant flooding makes a comeback: results of a full-scale, field implementation to recover mobilized NAPL. J contaminant Hydrol 230:103602

    CAS  Google Scholar 

  • Skarohlid R, Martinec M, McGachy Z, Roskova L (2020) In situ Chemical oxidation using peroxydisulfate to remove organic contaminants from soil and groundwater. Chem Listy 114:545–551

    CAS  Google Scholar 

  • Stroo HF, Ward CH (2010) In situ remediation of chlorinated solvent plumes, vol 1. Springer Science & Business Media, pp 309–324. https://doi.org/10.1007/978-1-4419-1401-9_10

  • Strycharz L, Newman S (2009) Use of native plants for remediation of trichloroethylene: II. Coniferous trees. Int J Phytorem 11:171–186. https://doi.org/10.1080/15226510802378459

    Article  CAS  Google Scholar 

  • Su C, Puls RW, Krug TA, Watling MT, O’Hara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research 46:5071–5084. https://doi.org/10.1016/j.watres.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Zhang YH, Ke H, McPherson G, He JB, Zhang X, John VT (2017) Environmental remediation of chlorinated hydrocarbons using biopolymer stabilized iron loaded halloysite nanotubes. Acs Sustain Chem Eng 5:10976–10985. https://doi.org/10.1021/acssuschemeng.7b02872

    Article  CAS  Google Scholar 

  • Suthersan S, Nelson D, Schnobrich, (2011) Hybridized design concepts and their application to ERD systems. Groundwater Monitor Remed 31:45–49

    Google Scholar 

  • Teerakun M, Reungsang A, Lin CJ, Liao CH (2011) Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater. J Environ Sci 23:560–567. https://doi.org/10.1016/s1001-0742(10)60448-2

    Article  CAS  Google Scholar 

  • Tong H, Chen M, Lv Y, Liu C, Zheng CandXia Y (2021) Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. Environ Geochem Health 43:1305–1317. https://doi.org/10.1007/s10653-020-00725-w

    Article  CAS  PubMed  Google Scholar 

  • Tratnyek PG, Johnson RL, Lowry GV, Brown RA (2014) In situ chemical reduction for source remediation. Chlorin Solv Sour Zone Remediat 7:307–351. https://doi.org/10.1007/978-1-4614-6922-3_10

    Article  Google Scholar 

  • Travis CC, Macinnis JM (1992) Vapor extraction of organics from subsurface soils Is it effective? Environ Sci Technol 26:1885–1887

    CAS  ADS  Google Scholar 

  • Triplett Kingston JL, Dahlen PR, Johnson PC (2010) State-of-the-practice review of in situ thermal technologies. Groundwater Monitor Remed 30:64–72

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ pollut Res 16:765–794

    CAS  Google Scholar 

  • Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54:1703–8. https://doi.org/10.1128/aem.54.7.1703-1708.1988

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang XH, Xin J, Yuan MJ, Zhao F (2020) Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: a review. Water Research 183. https://doi.org/10.1016/j.watres.2020.116060.

  • Wang Q, Yang Z, Yin L, Song X, Wei C, Li Y, Zhai W (2021) Bibliometric analysis on bioremediation of organic contaminated soil and groundwater based on Web of Science database. Sheng wu gong cheng xue bao Chinese J Biotechnol 37:3549–3564

    Google Scholar 

  • Watts RJ, Teel AL (2006) Treatment of contaminated soils and groundwater using ISCO. Pract Period Hazard Toxic Radioact Waste Manag 10:2–9

    CAS  Google Scholar 

  • Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO (2018) Natural attenuation of chlorinated ethenes in hyporheic zones: a review of key biogeochemical processes and in-situ transformation potential. Water Research 128:362–382. https://doi.org/10.1016/j.watres.2017.10.059

    Article  CAS  PubMed  Google Scholar 

  • Wei Y-T, Wu S-C, Chou C-M, Che C-H, Tsai S-M, Lien H-L (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Research 44:131–140. https://doi.org/10.1016/j.watres.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  • Wei K-H, Ma J, Xi B-D, Yu M-D, Cui J, Chen B-L, Li Y, Gu Q-B, He X-S (2022) Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. J Hazard Mater 432:128738

    CAS  PubMed  Google Scholar 

  • Wiedemeier TH, Barden MJ, Haas PE, Dickson WZ (2005) Designing monitoring programs to effectively evaluate the performance of natural attenuation. In: Practical handbook of environmental site characterization and ground-water monitoring, vol 2. John Wiley, pp 583–648. https://doi.org/10.1201/9781420032246.ch9

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–3. https://doi.org/10.1128/aem.49.1.242-243.1985

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Witt ME, Klecka GM, Lutz EJ, Ei TA, Grosso NR, Chapelle FH (2002) Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry. J Contam Hydrol 57:61–80. https://doi.org/10.1016/s0169-7722(01)00218-

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Jiang W, Chen D, Xu Y (2020) Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: a review. Ecotoxicol Environ Safety 202:110925

    CAS  PubMed  Google Scholar 

  • Xiao ZX, Jiang W, Chen D, Xu Y (2020) Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: a review. Ecotoxicol Environ Safety 202. https://doi.org/10.1016/j.ecoenv.2020.110925.

  • Xu D, Sun HM, Wang J, Wang N, Zuo YJ, Mosa AA, Yin XQ (2023) Global trends and current advances regarding greenhouse gases in constructed wetlands: a bibliometric-based quantitative review over the last 40 years. Ecological Engineering 193. https://doi.org/10.1016/j.ecoleng.2023.107018.

  • Yang Q, Gao Y, Ke J, Show PL, Ge Y, Liu Y, Guo RandChen J (2021) Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 12:7376–7416. https://doi.org/10.1080/21655979.2021.1974657

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhang C, Liu F, Tang J (2021) Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: evidence from diverse anaerobic corrosion mechanisms of nZVI. Chemosphere 262:127707

    CAS  PubMed  Google Scholar 

  • Yang X, Yang J, Hu Q, Xia M, Wu Z (2018) In-situ generation of active oxidants in permeable reactive barriers. In: 8th International Congress on Environmental Geotechnics (ICEG). Hang Z (ed) Environmental Science and Engineering. Springer, PEOPLES R CHINA, pp 868–873. https://doi.org/10.1007/978-981-13-2221-1_99

  • Yi S, Morson N, Edwards EA, Yang D, Liu R, Zhu L, Mabury SA (2022) Anaerobic microbial dechlorination of 6: 2 chlorinated polyfluorooctane ether sulfonate and the underlying mechanisms. Environ Sci Technol 56:907–916

    CAS  PubMed  ADS  Google Scholar 

  • Yuan M, Xin J, Wang X, Zhao F, Wang L, Liu M (2022) Coupling microscale zero-valent iron and autotrophic hydrogen-bacteria provides a sustainable remediation solution for trichloroethylene-contaminated groundwater: mechanisms, regulation, and engineering implications. Water Research 216. https://doi.org/10.1016/j.watres.2022.118286.

  • Zeppilli M, Dell’Armi E, Cristiani L, Papini MP, Majone M (2019) Reductive/oxidative sequential bioelectrochemical process for perchloroethylene removal. Water 11. https://doi.org/10.3390/w11122579.

  • Zhang S, Mao G, Crittenden J, Liu XandDu H (2017) Groundwater remediation from the past to the future: a bibliometric analysis. Water Res 119:114–125. https://doi.org/10.1016/j.watres.2017.01.029

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zhang J, Feng S-J (2023) The era of low-permeability sites remediation and corresponding technologies: a review. Chemosphere 313:137264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key and R&D Program of China (Grant No. 2022YFC3703103).

Funding

This work was supported by the National Key and R&D Program of China (Grant No. 2020YFC1808202).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and design. Conceptualization, methodology, formal analysis, investigation, and writing were performed by WL. Resources, writing, review, editing, and supervision were performed by JD. Conceptualization, review, and editing were performed by WZ. Writing, review, and editing were performed by XL. Investigation was performed by SC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihong Zhang.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible Editor: Xianliang Yi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, W., Dong, J. et al. Groundwater chlorinated solvent plumes remediation from the past to the future: a scientometric and visualization analysis. Environ Sci Pollut Res 31, 17033–17051 (2024). https://doi.org/10.1007/s11356-024-32080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32080-z

Keywords