Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cohomology and Crossed Module Extensions of Hom-Leibniz–Rinehart Algebras

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the concept of crossed module for Hom-Leibniz–Rinehart algebras. We then study the cohomology and extension theory of Hom-Leibniz–Rinehart algebras. It is proved that there is a one-to-one correspondence between equivalence classes of abelian extensions of Hom-Leibniz–Rinehart algebras and the elements of second cohomology group. Furthermore, we prove that there is a natural map from α-crossed module extensions of Hom-Leibniz–Rinehart algebras to the third cohomology group of Hom-Leibniz–Rinehart algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S.A., Ayupov S.A., Omirov B.A., Cartan subalgebras, weight spaces, and criterion of solvability of finite-dimensional Leibniz algebras. Rev. Mat. Complut., 2006, 19(1): 183–195

    MathSciNet  Google Scholar 

  2. Alp M., Pullback crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(1): 1–5

    MathSciNet  Google Scholar 

  3. Alp M., Pushout crossed modules of algebroids. Iran. J. Sci. Technol. Trans. A Sci., 2008, 32(3): 175–181

    MathSciNet  Google Scholar 

  4. Alp M., Cat1-Lie–Rinehart algebras. In: Mathematical Applications in Modern Science, Mathematics and Computers in Science and Engineering Series, 38, Athens: WSEAS Press, 2014, 70–73

    Google Scholar 

  5. Barnes D.W., On Levi’s theorem for Leibniz algebras. Bull. Aust. Math. Soc., 2012, 86(2): 184–185

    Article  MathSciNet  Google Scholar 

  6. Blokh A.M., On a generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR, 1965, 165: 471–473

    MathSciNet  Google Scholar 

  7. Casas J.M., Çetin S., Uslu E.Ö., Crossed modules in the category of Loday QD-Rinehart algebras. Homology Homotopy Appl., 2020, 22(2): 347–366

    Article  MathSciNet  Google Scholar 

  8. Casas J.M., Khmaladze E., Pacheco N., A non-abelian tensor product of Hom-Lie algebras. Bull. Malays. Math. Sci. Soc., 2017, 40(3): 1035–1054

    Article  MathSciNet  Google Scholar 

  9. Casas J.M., Ladra M., Omirov B.A., Karimjanov I.A., Classification of solvable Leibniz algebras with null-filiform nilradical. Linear Multilinear Algebra, 2013, 61(6): 758–774

    Article  MathSciNet  Google Scholar 

  10. Casas J.M., Ladra M., Pirashvili T., Crossed modules for Lie–Rinehart algebras. J. Algebra, 2004, 274(1): 192–201

    Article  MathSciNet  Google Scholar 

  11. Cuvier C., Algèbres de Leibnitz: définitions, propriétés. Ann. Sci. Écol. Norm. Sup. (4), 1994, 27(1): 1–45

    Article  MathSciNet  Google Scholar 

  12. Gao Y., Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 1999, 140(1): 33–56

    Article  MathSciNet  Google Scholar 

  13. Gao Y., The second Leibniz homology group for Kac–Moody Lie algebras. Bull. London Math. Soc., 2000, 32(1): 25–33

    Article  MathSciNet  Google Scholar 

  14. Guo S., Zhang X., Wang S., On split regular Hom-Leibniz–Rinehart algebras. J. Math. Res. Appl., 2022, 42(5): 481–498

    MathSciNet  Google Scholar 

  15. Hartwig J., Larsson D., Silvestrov S., Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295(2): 314–361

    Article  MathSciNet  Google Scholar 

  16. Herz J.C., Pseudo-algèbres de Lie. I. C. R. Acad. Sci. Paris, 1953, 236: 1935–1937

    Google Scholar 

  17. Huebschmann J., Poisson cohomology and quantization. J. Reine Angew. Math., 1990, 408: 57–113

    MathSciNet  Google Scholar 

  18. Huebschmann J., Duality for Lie–Rinehart algebras and the modular class. J. Reine Angew. Math., 1999, 510: 103–159

    Article  MathSciNet  Google Scholar 

  19. Laurent-Gengoux C., Teles J., Hom-Lie algebroids. J. Geom. Phys., 2013, 68: 69–75

    Article  MathSciNet  Google Scholar 

  20. Liu D., Lin L., On the toroidal Leibniz algebras. Acta Math. Sin. (Engl. Ser.), 2008, 24(2): 227–240

    Article  MathSciNet  Google Scholar 

  21. Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2), 1993, 39(3–4): 269–293

    MathSciNet  Google Scholar 

  22. Loday J.-L., Pirashvili T., Universal enveloping algebra of Leibniz algebras and (co)homology. Math. Ann., 1993, 296(1): 139–158

    Article  MathSciNet  Google Scholar 

  23. Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series, Cambridge: Cambridge University Press, 1987, 124: xvi+327 pp.

    Book  Google Scholar 

  24. Makhlouf A., Silvestrov S., Hom-algebra structures. J. Gen. Lie Theory Appl., 2008, 2(2): 51–64

    Article  MathSciNet  Google Scholar 

  25. Makhlouf A., Silvestrov S., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math., 2010, 22(4): 715–739

    Article  MathSciNet  Google Scholar 

  26. Mandal A., Kumar Mishra S., Hom-Lie–Rinehart algebras. Comm. Algebra, 2018, 46(9): 3722–3744

    Article  MathSciNet  Google Scholar 

  27. Omirov B.A., Conjugacy of Cartan subalgebras of complex finite-dimensional Leibniz algebras. J. Algebra, 2006, 302(2): 887–896

    Article  MathSciNet  Google Scholar 

  28. Palais R.S., The cohomology of Lie rings. Proc. Sympos. Pure Math., Providence, RI: Amer. Math. Soc., 1961, 3: 130–137

    Article  MathSciNet  Google Scholar 

  29. Rinehart G.S., Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 1963, 108: 195–222

    Article  MathSciNet  Google Scholar 

  30. Sheng Y., Representations of Hom-Lie algebras. Algebr. Represent. Theory, 2012, 15(6): 1081–1098

    Article  MathSciNet  Google Scholar 

  31. Wang Q., Tan S., Leibniz central extension on a Block Lie algebra. Algebra Colloq., 2007, 14(4): 713–720

    Article  MathSciNet  Google Scholar 

  32. Yau D., Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl., 2008, 2(2): 95–108

    Article  MathSciNet  Google Scholar 

  33. Zhang T., Han F.Y., Bi Y.H., Crossed modules for Hom-Lie-Rinehart algebras. Colloq. Math., 2018, 152(1): 1–14

    Article  MathSciNet  Google Scholar 

  34. Zhang T., Zhang H.Y., Crossed modules for Hom-Lie antialgebras. J. Algebra Appl., 2022, 21(7): Paper No. 2250135, 23 pp.

Download references

Acknowledgements

We would like to thank the referee for careful reading and for valuable suggestions on this paper. This research was supported by the National Natural Science Foundation of China (No. 11961049) and by the Key Project of Jiangxi Natural Science Foundation grant (No. 20232ACB201004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Chen, D. & Zhang, T. Cohomology and Crossed Module Extensions of Hom-Leibniz–Rinehart Algebras. Front. Math (2024). https://doi.org/10.1007/s11464-022-0351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11464-022-0351-4

Keywords

MSC2020