Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel fractal image compression using quadtree partition with task and dynamic parallelism

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Fractal image compression is a lossy compression technique based on the iterative function system, which can be used to reduce the storage space and increase the speed of data transmission. The main disadvantage of fractal image compression is the high computational cost of the encoding step, compared with the popular image compression based on discrete cosine transform. The aim of this paper is the development of parallel implementations of fractal image compression using quadtree partition. We develop two parallel implementations: the first one uses task parallelism over a multi-core system and the second uses dynamic parallelism over a GPU architecture. We show performance comparisons of the parallel implementations using standard images to compare the capabilities of these parallel architectures. The proposed parallel implementations achieve speedups over the serial implementation of approximately \(15 \times\) using the multi-core CPU and \(25 \times\) using the GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Uthayakumar, J., Vengattaraman, T., Ponnurangam, D.: A survey on data compression techniques: from the perspective of data quality, coding schemes, data type and applications. J. King Saud Univ. Comput. Inf. Sci. 33, 119–140 (2021)

    Google Scholar 

  2. Chauhan, Munesh Singh, Negi, Ashish, Rana, Prashant Singh: Fractal image compression using dynamically pipelined GPU clusters. In: Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012, pp. 575–581. Springer (2014)

  3. Zhang, Yan, Yutao, ZHAO, Guangxu, LI: Document image compression with application to digital preservation in digital libraries. In: 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4. IEEE (2018)

  4. Sonka, Milan, Hlavac, Vaclav, Boyle, Roger: Image processing, analysis, and machine vision. Cengage Learning, Stamford (2014)

    Google Scholar 

  5. Jacquin, Arnaud E., et al.: Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Process. 1(1), 18–30 (1992)

    Article  Google Scholar 

  6. Gupta, Richa, Mehrotra, Deepti, Tyagi, Rajesh Kumar: Computational complexity of fractal image compression algorithm. IET Image Process. 14(17), 4425–4434 (2021)

    Article  Google Scholar 

  7. Liu, Dan, Jimack, Peter K.: A survey of parallel algorithms for fractal image compression. J. Algorithms Comput. Technol. 1(2), 171–186 (2007)

    Article  Google Scholar 

  8. HY Saad, A.M., Abdullah, Mohd Z.: High-speed implementation of fractal image compression in low cost FPGA. Microprocess. Microsyst. 47, 429–440 (2016)

    Article  Google Scholar 

  9. Al Sideiri, Abir, Alzeidi, Nasser, Al Hammoshi, Mayyada, Chauhan, Munesh Singh, AlFarsi, Ghaliya: CUDA implementation of fractal image compression. J. Real-Time Image Process. 17(5), 1375–1387 (2020)

    Article  Google Scholar 

  10. Chitra, A., Krishnaswamy, Aravind, Sivanandam, S..N.: A parallel algorithm for fractal image coding. IFAC Procd. Vol. 30(25), 307–312 (1997). (IFAC Symposium on Artificial Intelligence in Real Time Control (AIRTC’97), Kuala Lumpur, Malaysia, 22-25 September 1997)

    Article  Google Scholar 

  11. Cao, Hua, Gu, Xi-jin: OpenMP parallelization of jacquin fractal image encoding. In: 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1–4. IEEE (2010)

  12. Khan, Shazeb Nawaz, Akhtar, Nadeem: Parallelization of fractal image compression over CUDA. In: Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing, pp. 375–382. Springer (2013)

  13. Fisher, Yuval: Fractal image compression: theory and application. Springer-Verlag, Berlin, Heidelberg (1995)

    Book  Google Scholar 

  14. Jacobs, E.W., Boss, R.D.: Fisher, Yuval: fractal-based image compression, II, Technical report. Naval ocean systems center, San Diego (1990)

    Book  Google Scholar 

  15. Mehta, Dinesh P., Sahni, Sartaj: Handbook of data structures and applications. Chapman & Hall/CRC, Boca Raton, Florida (2004)

    Book  Google Scholar 

  16. Itseez. OpenCV. Website, (2020). http://opencv.org//. Accessed 24 Sept 2020

  17. Intel Corporation. Intel C++ Compiler Classic Developer Guide and Reference, Using Automatic Vectorization. Website, (2021). https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html. Accessed 19 Nov 2021

  18. Pacheco, Peter: An introduction to parallel programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

    Google Scholar 

  19. Chapman, Barbara, Jost, Gabriele, Van Der Pas, Ruud: Using OpenMP: portable shared memory parallel programming, vol. 10. MIT press, Cambridge (2008)

    Google Scholar 

  20. Barlas, Gerassimos: Multicore and GPU programming: an integrated approach. Morgan Kaufmann Publishers Inc., San Francisco (2014)

    Google Scholar 

  21. Ayguadé, Eduard, Copty, Nawal, Duran, Alejandro, Hoeflinger, Jay, Lin, Yuan, Massaioli, Federico, Teruel, Xavier, Unnikrishnan, Priya, Zhang, Guansong: The design of OpenMP tasks. IEEE Trans. Parallel Distrib. Syst. 20(3), 404–418 (2009)

    Article  Google Scholar 

  22. Cook, Shane: CUDA programming: a developer’s guide to parallel computing with GPUs, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

    Google Scholar 

  23. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C programming. Wiley, Indianapolis (2014)

    Google Scholar 

  24. NVIDIA Corporation. CUDA C++ Programming Guide. Website (2020). https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed 24 Sept 2020

  25. Kirk, David B., Hwu, Wen-mei W.: Programming massively parallel processors, third edition: a hands-on approach, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

  26. Gonzalez, Rafael C., Woods, Richard E., Eddins, Steven L.: Image processing place. Website (2021). http://imageprocessingplace.com/root_files_V3/image_databases.htm. Accessed 08 Aug 2021

  27. Weber, Allan G.: The USC-SIPI image database. Website (2021). http://sipi.usc.edu/database/database.php. Accessed 08 Aug 2021

  28. Wang, Zhou, Bovik, Alan C., Sheikh, Hamid R., Simoncelli, Eero P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Nandi, Utpal: Fractal image compression using a fast affine transform and hierarchical classification scheme. The Visual Computer, pp. 1–14 (2021)

  30. Sorensen, Tyler, Donaldson, Alastair F.: The hitchhiker’s guide to cross-platform OpenCL application development. In: Proceedings of the 4th International Workshop on OpenCL, IWOCL ’16, New York, NY, USA (2016). Association for Computing Machinery

Download references

Acknowledgements

The authors acknowledge the support from “Laboratorio de Supercómputo del Bajío” through grant number 300832 from CONACyT. The research of the second author has been partially supported by SEP-CONACyT Grant A1-S-53349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Hernandez-Lopez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Lopez, F.J., Muñiz-Pérez, O. Parallel fractal image compression using quadtree partition with task and dynamic parallelism. J Real-Time Image Proc 19, 391–402 (2022). https://doi.org/10.1007/s11554-021-01193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01193-w

Keywords