Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization of die design parameters in ECAP for sustainable manufacturing using response surface methodology

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The most recent and advanced technique for grain refinement, Equal Channel Angular Pressing, is used in bulk materials to enhance the mechanical and other properties of materials. The objective of the present study is to investigate the effect of various die design parameters and to obtain the optimum value of these parameters. The parameters used are channel angle, corner angle, number of passes, on the shear strain produced by the mathematical method and the results were compared using response surface methodology. It has been investigated that the optimum values for producing maximum shear strain are for 90° channel angle and 0° corner angle. The value of shear strain reduces with the increase in channel angle and corner angle both. The results obtained by mathematical equation and by RSM are in good agreement with each other. It is expected that the present study will be useful for sustainable manufacturing applications, especially in aerospace, automobile, defence, health and similar other sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SPD:

Severe plastic deformation

RSM:

Response surface method

UFG:

Ultra fined grains

ECAP:

Equal channel angular pressing

SEM:

Scanning electron microscopy

References

  1. Zhang, D., Hu, H: Grain refinement in AZ31 magnesium alloy rod fabricated by extrusion-shearing severe plastic deformation process. Mater. Sci. Eng. 21, 243–249 (2011)

    Google Scholar 

  2. Pan, Z., Xu, F., Mathaudhu, S.N., Kecskes, L.J., Yin, W.H., Zhang, X.Y., Hartwig, K.T., Wei, Q.: Microstructural evolution and mechanical properties of niobium processed by equal channel angular extrusion up to 24 passes. ActaMaterialia 60(5), 2310–2323 (2012)

    Google Scholar 

  3. Agarwal, K.M., Tyagi, R.K., Gupta, B., Singhal, A.: Evolution of microstructure through various techniques of severe plastic deformation. In: Smart Innovation, Systems and Technologies, vol. 174, pp. 251–260. Springer, Berlin (2020)

    Google Scholar 

  4. Yoon, S.C., Jeong, H., Lee, S., Lee, S.: Analysis of plastic deformation behavior during back pressure equal channel angular pressing by the finite element method. Comput. Mater. Sci. 77, 202–207 (2013)

    Article  Google Scholar 

  5. LI, P., XUE, K., WANG, X. and C. QIAN: Refinement and consolidation of pure Al particles by equal channel angular pressing and torsion. Trans. Nonferrous Met. Soc. China. 24, 1289–1294 (2014)

    Article  Google Scholar 

  6. Kocich, R., Macháčková, A., Andreyachshenko, V.A.: A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci. 101, 233–241 (2015)

    Article  Google Scholar 

  7. Frint, S., Hockauf, M., Frint, P., M. F. and, Wagner, X.: Scaling up Segal’s principle of Equal-Channel Angular Pressing. Materials & Design. 97, 502–511 (2016)

    Article  Google Scholar 

  8. Mohan Agarwal, Krishna, R.K., Tyagi, V.K., Chaubey, Dixit, A.: Comparison of Different Methods of Severe Plastic Deformation for Grain Refinement. In IOP Conference Series: Materials Science and Engineering, 012074. (2019)

  9. Agwa, M.A., Ali, M.N., Al-Shorbagy, A.E.: Optimum processing parameters for equal channel angular pressing. Mech. Mater. 100, 1–11 (2016)

    Article  Google Scholar 

  10. Borodin, E.N., Bratov, V.: Non -equilibrium approach to prediction of microstructure evolution for metals undergoing severe plastic deformation. Mater. Charact. 141, 267–278 (2018)

    Article  Google Scholar 

  11. Cao, Y., Song, N., Liao, X., Song, M., Zhu, Y.: Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Engineering: R: Rep. 133, 1–59 (2018)

    Article  Google Scholar 

  12. Segal, V.: Review: Modes and processes of severe plastic deformation (SPD). Mater. (Basel). 11, 1175 (2018)

    Article  Google Scholar 

  13. Nakashima, K., Horita, Z., Nemoto, M., Langdon, T.G.: Influence of channel angle on the development of ultrafine grains in equal channel angular pressing. Pergamon, Acta mater. 46, 5 (1997)

    Google Scholar 

  14. Langdon, T.G., Furukawa, M., Nemoto, M., Horita, Z.: Using equal-channel angular pressing for refining grain size. JOM 52, 30–3 (2000)

    Article  Google Scholar 

  15. Kim, H.S., Seo, M.H., Hong, S.I.: Plastic deformation analysis of metals during equal channel angular pressing. JoMPT 113, 622–626 (2001)

    Google Scholar 

  16. Kim, H.S., Seo, M.H., Hong, S.I.: Finite element analysis of equal channel angular pressing of strain rate sensitive metals. Int. J. Fatigue 130, 497–503 (2002)

    Google Scholar 

  17. Agarwal, K.M., Tyagi, R.K., Dixit, A.: Theoretical analysis of equal channel angular pressing method for grain refinement of metals and alloys. Mater. Today Proc. 25(2020), 668–73 (2020)

    Article  Google Scholar 

  18. Luis-Pérez, C.J., Luri-Irigoyen, R., Gastón-Ochoa, D.: Finite element modeling of an Al–Mn alloy by equal channel angular extrusion (ECAE). J. Mater. Process. Technol. 153, 846–52 (2004)

    Article  Google Scholar 

  19. Semiatin, S.L., Salem, A.A., Saran, M.J.: Models for severe plastic deformation by equal-channel angular extrusion. JOM 56, 69–77 (2004)

    Article  Google Scholar 

  20. Olejnik, L., Rosochowski, A.: Methods of fabricating metals for nano–technology. Bull. Polish Acad. Sci. Tech. Sci. (2005)

  21. Xu, S., Zhao, G., Ma, X., Ren, G.: Finite element analysis and optimization of equal channel angular pressing for producing ultrafine grained materials. J. Mater. Process. Technol. 184(1–3), 209–16 (2006)

    Google Scholar 

  22. Spirdione, J., Ghonem, H.: Dynamic flow stress of fine grain material processed using equal channel angular pressing. Mater. Sci. Eng. A 698, 256–267 (2017)

    Article  Google Scholar 

  23. Saravanan, M., Pillai, R.M., Pai, B.C., Brahma Kumar, M., and K R RAVI: Equal channel angular pressing of pure aluminum—an analysis. (2006)

  24. Agarwal, K.M., Yagi, R.K., Choubey, V., Saxena, K.K.: Mechanical behaviour of Aluminium Alloy AA6063 processed through ECAP with optimum die design parameters. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1878705

    Article  Google Scholar 

  25. Agarwal, K.M., Tyagi, R.K., Saxena, K.K.: Deformation analysis of Al Alloy AA2024 through equal channel angular pressing for aircraft structures. Adv. Mater. Process. Technol 8(1), 828–842 (2022). https://doi.org/10.1080/2374068X.2020.1834756

    Article  Google Scholar 

  26. Agarwal, K.M., Tyagi, R.K., Dinesh Bhatia, A.: Effect of ECAP on the mechanical properties of titanium and its alloys for biomedical applications. Mater. Sci. Energy Technol. (2021). https://doi.org/10.1016/j.mset.2020.11.002

    Article  Google Scholar 

  27. Shah, M.N., Dixit, S., Kumar, R., Jain, R., Anand, K.: Causes of delays in slum reconstruction projects in India. Int. J. Constr. Manage. 21(5), 452–467 (2021). https://doi.org/10.1080/15623599.2018.1560546

    Article  Google Scholar 

  28. Dixit, S., Stefańska, A., Musiuk, A.: Architectural form finding in arboreal supporting structure optimisation. Ain Shams Engineering Journal. 12(2), 2321–2329 (2021). https://doi.org/10.1016/j.asej.2020.08.022

    Article  Google Scholar 

  29. Dixit, S., Stefańska, A., Musiuk, A., Singh, P.: Study of enabling factors affecting the adoption of ICT in the indian built environment sector. Ain Shams Eng. J. 12(2), 2313–2319 (2021). https://doi.org/10.1016/j.asej.2020.09.020

    Article  Google Scholar 

  30. Dixit, S., Stefańska, A., Singh, P.: Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Constr. Manage. (2021). https://doi.org/10.1080/15623599.2021.2015105

    Article  Google Scholar 

  31. Mishra, L., Dixit, S., Nangia, R., Saurabh, K., Kumar, K., Sharma, K.: A brief review on segregation of solid wastes in indian region. Mater. Today Proc. 69, 419–424 (2022). https://doi.org/10.1016/j.matpr.2022.09.070

    Article  Google Scholar 

  32. Dixit, S., et al.: Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2021.12.154

    Article  Google Scholar 

  33. Arora, R., et al.: Potential utilization of waste materials for the production of green concrete: a review. Mater. Today Proc. 69, 317–322 (2022). https://doi.org/10.1016/j.matpr.2022.08.542

    Article  Google Scholar 

  34. Arora, R., Kumar, K., Dixit, S., Mishra, L.: Analyze the outcome of waste material as cement replacement agent in basic concrete. Mater. Today Proc. 56, 1877–1881 (2022). https://doi.org/10.1016/j.matpr.2021.11.148

    Article  Google Scholar 

  35. Kumar, K., et al.: Comparative analysis of Waste materials for their potential utilization in green concrete applications. Materials. (2022). https://doi.org/10.3390/ma15124180

    Article  Google Scholar 

  36. Dixit, S., Singh, P.: Investigating the disposal of E-Waste as in architectural engineering and construction industry. Mater. Today Proc. 56, 1891–1895 (2022). https://doi.org/10.1016/j.matpr.2021.11.163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Mohan Agarwal or Saurav Dixit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, K.M., Singh, P., Dixit, S. et al. Optimization of die design parameters in ECAP for sustainable manufacturing using response surface methodology. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01365-x

Keywords