Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance of Zeolite and Trace Elements on Biogas Production from Alkaline Hydrogen Peroxide–Pretreated Sweet Sorghum Bagasse Slurry

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In order to improve the biogas production from sweet sorghum bagasse (SSB) pretreated with alkaline hydrogen peroxide and reveal the influence of zeolite dosage and TE on the anaerobic digestion performance, as well as the synergistic effect of zeolite dosage and TE, three dosages of zeolite and trace elements (TE) were used as additives for batched biogas production from pretreated sweet sorghum bagasse slurry (PSSBS). The results showed that the maximum methane production of 274.5 mL/g volatile solid (VS) from the group of PSSBS + 5 g/L zeolite + 1 mL TE could be obtained and 58.4% higher than that of untreated sweet sorghum bagasse. Modified Gompertz model estimation demonstrated that the PSSBS + 5 g/L zeolite + 1 mL TE group caused the highest methane production rate to improve by up to 41.6% from SSB and by at least 39.9% from PSSBS. Moreover, with the zeolite and TE addition, activities of cellulase and dehydrogenase of the digestate analysis indicated a positive influence on biogas production and the high alkalinity maintained the stability of the system. This work will provide experimental reference for biogas production from sweet sorghum bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami A-S, Ok YS, Lam SS, Tabatabaei M (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energ Convers Manage 212:112792. https://doi.org/10.1016/j.enconman.2020.112792

    Article  CAS  Google Scholar 

  2. Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, pp 85–154. https://doi.org/10.1007/978-3-319-14033-9_3

    Chapter  Google Scholar 

  3. Saadatinavaz F, Karimi K, Denayer JFM (2021) Hydrothermal pretreatment: an efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. Bioresource Technol 341:125834. https://doi.org/10.1016/j.biortech.2021.125834

    Article  CAS  Google Scholar 

  4. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489. https://doi.org/10.1016/j.fuel.2012.12.092

    Article  CAS  Google Scholar 

  5. Tisma M, Kojic AB, Zelic B, Planinic M (2017) Biological pre-treatment of lignocellulose waste for its further application in biogas production. J Biotechnol 256:S12. https://doi.org/10.1016/j.jbiotec.2017.06.042

    Article  Google Scholar 

  6. Patowary D, Baruah DC (2018) Effect of combined chemical and thermal pretreatments on biogas production from lignocellulosic biomasses. Ind Crop Prod 124:735–746. https://doi.org/10.1016/j.indcrop.2018.08.055

    Article  CAS  Google Scholar 

  7. Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33(3):873–879. https://doi.org/10.1007/s11814-015-0217-5

    Article  CAS  Google Scholar 

  8. Correia JAC, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresource Technol 139:249–256. https://doi.org/10.1016/j.biortech.2013.03.153

    Article  CAS  Google Scholar 

  9. Shen F, Saddler JN, Liu R, Lin L, Deng S, Zhang Y, Yang G, Xiao H, Li Y (2011) Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr Polym 86(4):1542–1548. https://doi.org/10.1016/j.carbpol.2011.06.059

    Article  CAS  Google Scholar 

  10. Cao W, Sun C, Li X, Qiu J, Liu R (2017) The methane production enhancement from products of alkaline hydrogen peroxide pretreated sweet sorghum bagasse. RSC Adv 7:5701–5707. https://doi.org/10.1039/C6RA25798D

    Article  ADS  CAS  Google Scholar 

  11. Markou G, Georgakakis D (2013) Anaerobic mono- and co-digestion of maize silage and low solid swine wastewater in a novel two-state (liquid/solid) anaerobic digester. J Renew Sustain Ener 5(5):053107. https://doi.org/10.1063/1.4821290

    Article  CAS  Google Scholar 

  12. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. https://doi.org/10.1007/s00253-004-1642-2

    Article  CAS  PubMed  Google Scholar 

  13. Campos FM, Figueiredo AR, Hogg TA, Couto JA (2009) Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine. Food Microbiol 26(4):409–414. https://doi.org/10.1016/j.fm.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Zhang L, Xi B, Sun W, Xia X, Zhu C, He X, Li M, Yang T, Wang P, Zhang Z (2015) Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresource Technol 180:192–199. https://doi.org/10.1016/j.biortech.2014.12.023

    Article  CAS  Google Scholar 

  15. Sun C, Liu R, Cao W, Yin R, Mei Y, Zhang L (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energ Fuel 29(8):4966–4975. https://doi.org/10.1021/acs.energyfuels.5b00838

    Article  CAS  Google Scholar 

  16. Fatima B, Liaquat R, Farooq U, Jamal A, Ali MI, Liu FJ, He H, Guo H, Urynowicz M, Huang Z (2021) Enhanced biogas production at mesophilic and thermophilic temperatures from a slaughterhouse waste with zeolite as ammonia adsorbent. Int J Environ Sci Te 18(2):265–274. https://doi.org/10.1007/s13762-020-02822-w

    Article  CAS  Google Scholar 

  17. Li R, Liu D, Zhang Y, Zhou J, Tsang YF, Liu Z, Duan N, Zhang Y (2019) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651(Pt 1):61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Linville JL, Shen Y, Schoene RP, Nguyen M, Urgun-Demirtas M, Snyder SW (2016) Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration. Process Biochem 51(9):1283–1289. https://doi.org/10.1016/j.procbio.2016.06.003

    Article  CAS  Google Scholar 

  19. Garuti M, Langone M, Fabbri C, Piccinini S (2018) Methodological approach for trace elements supplementation in anaerobic digestion: experience from full-scale agricultural biogas plants. J Environ Manage 223:348–357. https://doi.org/10.1016/j.jenvman.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  20. Xue S, Qiu L, Guo X, Yao Y (2020) Effect of liquid digestate recirculation on biogas production and enzyme activities for anaerobic digestion of corn straw. Water Sci Technol 82(1):144–156. https://doi.org/10.2166/wst.2020.338

    Article  CAS  PubMed  Google Scholar 

  21. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenerg 35(3):992–998. https://doi.org/10.1016/j.biombioe.2010.12.022

    Article  CAS  Google Scholar 

  22. Mancini G, Papirio S, Riccardelli G, Lens PNL, Esposito G (2018) Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw. Bioresource Technol 247:897–903. https://doi.org/10.1016/j.biortech.2017.10.001

    Article  CAS  Google Scholar 

  23. Sun C, Xie Y, Hou F, Yu Q, Wang Y, Wang X, Miao C, Ma J, Ge W, Zhang T, Cao W, Zhao Y (2020) Enhancement on methane production and anaerobic digestion stability via co-digestion of microwave-Ca(OH)2 pretreated sugarcane rind slurry and kitchen waste. J Clean Prod 264:121731. https://doi.org/10.1016/j.jclepro.2020.121731

    Article  CAS  Google Scholar 

  24. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  25. Sun C, Cao W, Banks CJ, Heaven S, Liu R (2016) Biogas production from undiluted chicken manure and maize silage: a study of ammonia inhibition in high solids anaerobic digestion. Bioresource Technol 218:1215–1223. https://doi.org/10.1016/j.biortech.2016.07.082

    Article  CAS  Google Scholar 

  26. APHA (2012) Standard methods for the examination of water and wastewater, Washington DC

  27. Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technol 104:127–135. https://doi.org/10.1016/j.biortech.2011.10.068

    Article  CAS  Google Scholar 

  28. Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2(4):875–877. https://doi.org/10.1038/nprot.2007.102

    Article  CAS  PubMed  Google Scholar 

  29. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  30. Ryssov-Nielsen H (1975) Measurement of the inhibition of respiration in activated sludge by a modified determination of the TTC-dehydrogenase activity. Water Rese 9(12):1179–1185. https://doi.org/10.1016/0043-1354(75)90118-9

    Article  CAS  Google Scholar 

  31. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet KJAEM (1990) Modeling of the bacterial growth curve. Appl Environ Microb 56(6):1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990

    Article  ADS  CAS  Google Scholar 

  32. Aromolaran A, Sartaj M (2023) Microbial analysis and methane assessment of trinary anaerobic co-digestion of organic fraction of municipal solid waste. BioEnerg Res. https://doi.org/10.1007/s12155-023-10623-5

  33. Montalvo S, Díaz F, Guerrero L, Sánchez E, Borja R (2005) Effect of particle size and doses of zeolite addition on anaerobic digestion processes of synthetic and piggery wastes. Process Biochem 40(3):1475–1481. https://doi.org/10.1016/j.procbio.2004.06.032

    Article  CAS  Google Scholar 

  34. Ortner M, Rameder M, Rachbauer L, Bochmann G, Fuchs W (2015) Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste. Biochem Eng J 99:107–113. https://doi.org/10.1016/j.bej.2015.03.021

    Article  CAS  Google Scholar 

  35. Zhang W, Zhang L, Li A (2015) Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res 84:266–277. https://doi.org/10.1016/j.watres.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  36. Qiang H, Lang D-L, Li Y-Y (2012) High-solid mesophilic methane fermentation of food waste with an emphasis on iron, cobalt, and nickel requirements. Bioresource Technol 103(1):21–27. https://doi.org/10.1016/j.biortech.2011.09.036

    Article  CAS  Google Scholar 

  37. Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452. https://doi.org/10.1016/j.jbiosc.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Luo L, Li W, Wang X, Sun Y, Sun Y, Gong W (2018) Optimization of mixing ratio of ammoniated rice straw and food waste co-digestion and impact of trace element supplementation on biogas production. J Mater Cycles Waste 20(2):745–753. https://doi.org/10.1007/s10163-017-0634-0

    Article  CAS  Google Scholar 

  39. Yang Q, Wu B, Yao F, He L, Chen F, Ma Y, Shu X, Hou K, Wang D, Li X (2019) Biogas production from anaerobic co-digestion of waste activated sludge: co-substrates and influencing parameters. Rev Environ Sci Bio 18(4):771–793. https://doi.org/10.1007/s11157-019-09515-y

    Article  CAS  Google Scholar 

  40. Labatut RA, Pronto JL (2018) Chapter 4 - Sustainable waste-to-energy technologies: anaerobic digestion. In: Trabold TA, Babbitt CW (eds) Sustainable food waste-to-energy systems. Academic Press, pp 47–67. https://doi.org/10.1016/B978-0-12-811157-4.00004-8

    Chapter  Google Scholar 

  41. Almomani F, Bhosale RR (2020) Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 255:126805. https://doi.org/10.1016/j.chemosphere.2020.126805

    Article  CAS  PubMed  Google Scholar 

  42. Ahuja SK, Ferreira GM, Moreira AR (2004) Production of an endoglucanase by the shipworm bacterium, Teredinobacter turnirae. J Ind Microbiol Biot 31(1):41–47. https://doi.org/10.1007/s10295-004-0113-1

    Article  CAS  Google Scholar 

  43. Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energ 78:527–530. https://doi.org/10.1016/j.renene.2015.01.033

    Article  CAS  Google Scholar 

  44. Zhang H, Tian Y, Wang L, Mi X, Chai Y (2016) Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw. Biodegradation 27(2):69–82. https://doi.org/10.1007/s10532-016-9756-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (LY22E060002 and LY18E080023) and University Students Science and Technology Innovation Activity Plan of Zhejiang province (2022R417A007).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by Weixing Cao and Chen Sun. The first draft of the manuscript was written by Xuemei Li. Material preparation, data collection, and analysis were performed by Ying Xiao and Rui Zhang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chen Sun or Weixing Cao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiao, Y., Zhang, R. et al. Performance of Zeolite and Trace Elements on Biogas Production from Alkaline Hydrogen Peroxide–Pretreated Sweet Sorghum Bagasse Slurry. Bioenerg. Res. 17, 681–689 (2024). https://doi.org/10.1007/s12155-023-10641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10641-3

Keywords