Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LiOH-mediated crystallization regulating strategy enhancing electrochemical performance and structural stability of SiO anodes for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon monoxide (SiO) is widely recognized as a promising anode material for next-generation lithium-ion batteries. Owing to its metastable amorphous structure, SiO exhibits a highly complex degree of crystallization at the microscopic level, which significantly influences its electrochemical behavior. As a consequence, accurately regulating the crystallization of SiO, and further establishing the relationship between crystallinity and electrochemical performance are very critical for SiO anodes. In this article, carbon-coated SiO materials with different crystallinity degrees were synthesized using lithium hydroxide monohydrate (LiOH·H2O) as a structural modifier to reveal this rule. Additionally, moderate amount of LiOH·H2O addition results in the forming of an oxygen-rich shell, which effectively inhibits the inward migration of oxygen atoms on the SiO surface and suppresses volume expansion. However, the crystallinity of SiO will gradually enhance and the crystalline phase appears with increasing the amount of LiOH·H2O, which will generate a deteriorative Li+ diffusion kinetic. After balancing the above two contradictions, a mass fraction of 1% LiOH·H2O for the additive yielded SiO@C-1, characterized by optimal crystallinity. SiO@C-1 demonstrates exceptional long-cycle stability with 74.8% capacity retention after 500 cycles at 1 A·g−1. Furthermore, it achieves a capacity retention of 52.2% even at a high density of 5 A·g−1. This study first reveals the relationship between SiO crystallinity and electrochemical performance, which efficiently guides the design of high-performance SiO anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

    Article  CAS  Google Scholar 

  2. Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

    Article  CAS  Google Scholar 

  3. Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Gradient design for high-energy and high-power batteries. Adv. Mater. 2022, 34, 2202780.

    Article  CAS  Google Scholar 

  4. Xing, F. F.; Bi, Z. H.; Su, F.; Liu, F. Y.; Wu, Z. S. Unraveling the design principles of battery-supercapacitor hybrid devices: From fundamental mechanisms to microstructure engineering and challenging perspectives. Adv. Energy Mater. 2022, 12, 2200594.

    Article  CAS  Google Scholar 

  5. Wang, L.; Zhang, X.; Li, C.; Xu, Y. N.; An, Y. B.; Liu, W. J.; Hu, T.; Yi, S.; Wang, K.; Sun, X. Z. et al. Cation-deficient T-Nb2O5/graphene Hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors. Chem. Eng. J. 2023, 468, 143507.

    Article  CAS  Google Scholar 

  6. Li, K. X.; Li, P.; Sun, Z. N.; Shi, J.; Huang, M. H.; Chen, J. W.; Liu, S.; Shi, Z. C.; Wang, H. L. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy Environ. 2023, 8, 1091–1101.

    Article  CAS  Google Scholar 

  7. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  8. Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

    Article  CAS  Google Scholar 

  9. Zhu, J. X.; Lv, L.; Zaman, S.; Chen, X. B.; Dai, Y. H.; Chen, S. H.; He, G. J.; Wang, D. S.; Mai, L. Q. Advances and challenges in single-site catalysts towards electrochemical CO2 mttlranation. Energy Environ Sci. 2023, 16, 4812–4833.

    Article  CAS  Google Scholar 

  10. Zhang, R. R.; Xiao, Z. X.; Lin, Z. K.; Yan, X. H.; He, Z. Y.; Jiang, H. R.; Yang, Z.; Jia, X. L.; Wei, F. Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 2024, 16, 43.

    Article  CAS  Google Scholar 

  11. Xiao, Z. X.; Yu, C. H.; Lin, X. Q.; Chen, X.; Zhang, C. X.; Wei, F. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon 2019, 149, 462–470.

    Article  CAS  Google Scholar 

  12. Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.

    Article  Google Scholar 

  13. Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

    Article  CAS  Google Scholar 

  14. Erhard, L. C.; Rohrer, J.; Albe, K.; Deringer, V. L. Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine learning. Nat. Commun. 2024, 15, 1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan, S. Y.; Han, J. W.; Wang, Y. Q.; Li, Z. S.; Chen, F. Q.; Guo, Y.; Han, Z. S.; Xiao, K. F.; Yu, Z. C.; Yu, M. Y. et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 2022, 34, 2203617.

    Article  CAS  Google Scholar 

  17. Fu, J.; Wang, D.; Li, Y.; Liu, X. Z.; Zhang, R.; Liu, Z. Y.; Liu, P. D.; Zhang, L. J.; Li, X. F.; Wen, G. W. 3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries. Nano Res. 2024, 17, 2693–2703.

    Article  CAS  Google Scholar 

  18. Qiao, Y.; Yang, S. Y.; Ma, Z. Q.; Yang, Y. Y. C.; Hong, X.; Fu, Z. W. Solid-state corrosion of lithium for prelithiation of SiOx-C composite anode with carbon-incorporated lithium phosphorus oxynitride. Nano Res. 2022, 16, 8394–8404.

    Article  Google Scholar 

  19. Long, Z. X.; Fu, R. S.; Ji, J. J.; Feng, Z. Y.; Liu, Z. P. Unveiling the effect of surface and bulk structure on electrochemical properties of disproportionated SiOx anodes. ChemNanoMat 2020, 6, 1127–1135.

    Article  CAS  Google Scholar 

  20. Jing, J. Y.; Li, Q.; Li, C. Z.; Yang, Z. K.; Yu, G. C.; Bai, X.; Li, T. Synchronous modification to realize micron-SiOx anode with durable and superior electrochemical performance for lithium-ion batteries. Appl. Surf. Sci. 2023, 627, 157293.

    Article  CAS  Google Scholar 

  21. Liu, Y. X.; Shao, R.; Jiang, R. Y.; Song, X. Y.; Jin, Z.; Sun, L. A review of existing and emerging binders for silicon anodic Li-ion batteries. Nano Res. 2023, 16, 6736–6752.

    Article  CAS  Google Scholar 

  22. Qian, G. Y.; Li, Y. W.; Chen, H. B.; Xie, L.; Liu, T. C.; Yang, N.; Song, Y. L.; Lin, C.; Cheng, J. F.; Nakashima, N. et al. Revealing the aging process of solid electrolyte interphase on SiOx anode. Nat. Commun. 2023, 14, 6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He, Z. Y.; Xiao, Z. X.; Yue, H. J.; Jiang, Y. X.; Zhao, M. Y.; Zhu, Y. K.; Yu, C. H.; Zhu, Z. X.; Lu, F.; Jiang, H. R. et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 2023, 33, 2300094.

    Article  CAS  Google Scholar 

  24. Zhang, K. Y.; Du, W. Z.; Qian, Z.; Lin, L. D.; Gu, X.; Yang, J.; Qian, Y. T. SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithiumion batteries. Carbon 2021, 178, 202–210.

    Article  CAS  Google Scholar 

  25. Yang, Z.; Li, Z. L.; Yang, Y. Z.; Zhang, Q.; Xie, H. L.; Wang, J.; Świerczek, K.; Zhao, H. L. Wel-dispersed fe nanoclusters for effectively increasing the initial Coulombic efficiency of the SiO anode. ACS Nano 2023, 17, 7806–7812.

    Article  CAS  PubMed  Google Scholar 

  26. Fu, R. S.; Ji, J. J.; Yun, L.; Jiang, Y. B.; Zhang, J.; Zhou, X. F.; Liu, Z. P. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability. Energy Storage Mater. 2021, 35, 317–326.

    Article  Google Scholar 

  27. Ma, F.; Li, Y. B.; Liu, B.; Wu, J. K.; Wu, Y. H.; Lu, J.; Zhong, C.; Hu, W. B. 3D carbon coating enabled high-capacity and stable micro-sized silicon suboxide-graphite blended anodes for practical lithiumion batteries. Batteries Supercaps 2023, 6, e202300124.

    Article  CAS  Google Scholar 

  28. Xiao, Z. X.; Lin, X. Q.; Zhang, C. X.; Shen, J. Q.; Zhang, R. R.; He, Z. Y.; Lin, Z. K.; Jiang, H. R.; Wei, F. Insights into the coating integrity and its effect on the electrochemical performance of core–shell structure SiOx@C composite anodes. Small Methods 2023, 7, 2201623.

    Article  CAS  Google Scholar 

  29. Shi, H. B.; Zhang, H.; Li, X. X.; Du, Y.; Hou, G. L.; Xiang, M. Q.; Lv, P. P.; Zhu, Q. S. In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition. Carbon 2020, 168, 113–124.

    Article  CAS  Google Scholar 

  30. Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y. W.; Fujita, T.; Chen, M. W. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi, G.; Kim, J.; Kang, B. Understanding limited reversible capacity of a SiO electrode during the first cycle and its effect on initial Coulombic efficiency. Chem. Mater. 2019, 31, 6097–6104.

    Article  CAS  Google Scholar 

  32. Choi, G.; Kim, J.; Kang, B. High initial Coulombic efficiency of SiO enabled by controlling SiO2 matrix crystallization. ACS Appl. Mater. Interfaces 2022, 14, 44261–44270.

    Article  CAS  PubMed  Google Scholar 

  33. Li, J.; Guo, J. G.; Sun, Q.; Nie, X. K.; Dai, L. N.; Wang, Y.; Ci, L. J. Potassium ions regulated the disproportionation of silicon monoxide boosting its performance for lithium-ion battery anodes. Energy Fuels 2021, 35, 16202–16211.

    Article  CAS  Google Scholar 

  34. Zhu, G. B.; Gu, Y. Y.; Heng, S.; Wang, Y.; Qu, Q. T.; Zheng, H. H. Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability. Electrochim. Acta 2019, 323, 134840.

    Article  CAS  Google Scholar 

  35. Zheng, G. R.; Xiang, Y. X.; Xu, L. F.; Luo, H.; Wang, B. L.; Liu, Y.; Han, X.; Zhao, W. M.; Chen, S. J.; Chen, H. L. et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 2018, 8, 1801718.

    Article  Google Scholar 

  36. Wang, J. Y.; Wang, X. L.; Liu, B. N.; Lu, H.; Chu, G.; Liu, J.; Guo, Y. G.; Yu, X. Q.; Luo, F.; Ren, Y. et al. Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 2020, 78, 105101.

    Article  CAS  Google Scholar 

  37. Zhang, L. H.; Liu, Y. Z.; Guo, F. M.; Ren, Y.; Lu, W. Q. Optimal microstructure of silicon monoxide as the anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 51965–51974.

    Article  CAS  PubMed  Google Scholar 

  38. Li, D. N.; Yang, K.; Li, Y.; Li, F. F.; Xue, B. A porous lithium silicate ceramic separator prepared from diatomite: Effect of LiOH on pore structure, composition and electrochemical properties of the separator. J. Power Sour. 2021, 482, 228945.

    Article  CAS  Google Scholar 

  39. Tao, J.; Wang, F.; Han, F.; He, Y. L.; Zhang, F. Q.; Liu, J. S. Improving the lithium storage performance of micro-sized SiOx particles by uniform carbon interphase encapsulation and suitable SiO2 buffer component. Electrochim. Acta 2021, 385, 138431.

    Article  CAS  Google Scholar 

  40. San Andrés, E.; del Prado, A.; Martínez, F. L.; Mártil, I.; Bravo, D.; López, F. J. Rapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiNx: H films deposited by electron cyclotron resonance. J. Appl. Phys. 2000, 87, 1187–1192.

    Article  Google Scholar 

  41. Choi, G.; Kim, M.; Kang, B. A new design rule for developing SiO with high performance: Controlling short-range ordering of SiO2 phase. Adv. Energy Mater. 2023, 13, 2302362.

    Article  CAS  Google Scholar 

  42. Zhu, J. X.; Li, J. T.; Lu, R. H.; Yu, R. H.; Zhao, S. Y.; Li, C. B.; Lv, L.; Xia, L. X.; Chen, X. B.; Cai, W. W. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 2023, 14, 4670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El-Rafei, M. A. Preparation and characterization of mesoporous amorphous nano-silica and nano-cristobalite for value enhancement of low-cost Egyptian waste materials. Ceram. Int. 2022, 48, 32185–32195.

    Article  CAS  Google Scholar 

  44. Chung, D. J.; Youn, D.; Kim, J. Y.; Jeong, W. J.; Kim, S.; Ma, D.; Lee, T. R.; Kim, S. T.; Kim, H. Topology optimized prelithiated SiO anode materials for lithium-ion batteries. Small 2022, 14, 2202209.

    Article  Google Scholar 

  45. Yoo, S.; Kim, J.; Kang, B. Characterizing local structure of SiOx using confocal μ-Raman spectroscopy and its effects on electrochemical property. Electrochim. Acta 2016, 212, 68–75.

    Article  CAS  Google Scholar 

  46. Liu, K. L.; Yu, C.; Xie, Y. Y.; Guo, W.; Yu, J. H.; Ni, L.; Wang, Z.; Fu, R.; Qiu, J. S. Correlation between self-discharge behavior and heteroatoms over doped carbon sheets for enhanced pseudocapacitance. J. Energy Chem. 2022, 72, 291–298.

    Article  CAS  Google Scholar 

  47. Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

    Article  CAS  Google Scholar 

  48. Hou, S. Y.; Yu, C.; Song, X. D.; Ding, Y. W.; Chang, J. W.; Liu, Y. B.; Chen, L.; Wei, Q. B.; Zhang, X. B.; Qiu, J. S. Modulating inplane defective density of carbon nanotubes by graphitic carbon nitride quantum dots for enhanced triiodide reduction. Adv. Funct. Mater. 2023, 33, 2212112.

    Article  CAS  Google Scholar 

  49. Kim, J. H.; Park, C. M.; Kim, H.; Kim, Y. J.; Sohn, H. J. Electrochemical behavior of SiO anode for Li secondary batteries. J. Electroanal. Chem. 2011, 661, 245–249.

    Article  CAS  Google Scholar 

  50. Hohl, A.; Wieder, T.; van Aken, P. A.; Weirich, T. E.; Denninger, G.; Vidal, M.; Oswald, S.; Deneke, C.; Mayer, J.; Fuess, H. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non-Cryst. Solids 2003, 320, 255–280.

    Article  CAS  Google Scholar 

  51. Park, C. M.; Choi, W.; Hwa, Y.; Kim, J. H.; Jeong, G.; Sohn, H. J. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 2010, 20, 4854–4860.

    Article  CAS  Google Scholar 

  52. Tan, T.; Lee, P. K.; Zettsu, N.; Teshima, K.; Yu, D. Y. W. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries. Electrochim. Acta 2022, 404, 139777.

    Article  CAS  Google Scholar 

  53. Marler, B. On the relationship between refractive index and density for SiO2-polymorphs. Phys. Chem. Miner. 1988, 16, 286–290.

    Article  CAS  Google Scholar 

  54. Tao, J. M.; Yan, Z. R.; Yang, J. S.; Li, J. X.; Lin, Y. B.; Huang, Z. G. Boosting the cell performance of the SiOx@C anode material via rational design of a Si-valence gradient. Carbon Energy 2022, 4, 129–141.

    Article  CAS  Google Scholar 

  55. Chae, S.; Lim, H. K.; Lee, S. Energy landscapes for lithium incorporation and diffusion in multidomain silicon suboxide anode materials. ACS Appl. Mater. Interfaces 2023, 15, 57059–57069.

    CAS  Google Scholar 

  56. Xu, S.; Hou, X. D.; Wang, D. N.; Zuin, L.; Zhou, J. G.; Hou, Y.; Mann, M. Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 2022, 12, 2200127.

    Article  CAS  Google Scholar 

  57. Hu, X. B.; Xu, P.; Liao, M. D.; Lu, X. Q.; Shen, G. B.; Zhong, C. H.; Zhang, M. Y.; Huang, Q. Z.; Su, Z. A. Amorphous SiO2 nanoparticles encapsulating a SiO anode with strong structure for high-rate lithium-ion batteries. ACS Appl. Energy Mater. 2024, 7, 774–784.

    Article  CAS  Google Scholar 

  58. Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2215076.

    Article  CAS  Google Scholar 

  60. Zhao, J. K.; Wang, B.; Zhan, Z. H.; Hu, M. Y.; Cai, F. P.; Świerczek, K.; Yang, K. M.; Ren, J. N.; Guo, Z. H.; Wang, Z. L. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J. Colloid Interface Sci. 2024, 664, 790–800.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Z.; Yu, C.; Zhao, C. T.; Guo, W.; Yu, J. H.; Qiu, J. S. Interface inversion: A promising strategy to configure ultrafine nanoparticles over graphene for fast sodium storage. Small 2021, 17, 2005119.

    Article  CAS  Google Scholar 

  62. Zhao, Z. Y.; Chen, F. Q.; Han, J. W.; Kong, D. B.; Pan, S. Y.; Xiao, J.; Wu, S. C.; Yang, Q. H. Revival of microparticular silicon for superior lithium storage. Adv. Energy Mater. 2023, 13, 2300367.

    Article  CAS  Google Scholar 

  63. Deng, D. N.; Wu, J.; Feng, Q. G.; Zhao, X.; Liu, M. J.; Bai, Y.; Wang, J. X.; Zheng, X. R.; Jiang, J. B.; Zhuang, Z. C. et al. Highly reversible zinc-air batteries at −40 °C enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. 2024, 34, 2308762.

    Article  CAS  Google Scholar 

  64. Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

    Article  CAS  PubMed  Google Scholar 

  65. Wu, W.; Kang, Y. Y.; Wang, M.; Xu, D. W.; Wang, J.; Cao, Y. L.; Wang, C. Y.; Deng, Y. H. An ultrahigh-areal-capacity SiOx negative electrode for lithium ion batteries. J. Power Sources 2020, 464, 228244.

    Article  CAS  Google Scholar 

  66. Chu, F. L.; Zhou, J. W.; Liu, J. M.; Tang, F. C.; Song, L. B.; Wu, F. X. Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li–Ge alloy for stable lithium metal anodes. Nano Res. 2024, 17, 5148–5158.

    Article  CAS  Google Scholar 

  67. Ko, S.; Han, X.; Shimada, T.; Takenaka, N.; Yamada, Y.; Yamada, A. Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode. Nat. Sustain. 2023, 6, 1705–1714.

    Article  Google Scholar 

  68. Xu, S.; Zhou, J. G.; Wang, J.; Pathiranage, S.; Oncel, N.; Robert Ilango, P.; Zhang, X.; Mann, M.; Hou, X. D. In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101645.

    Article  CAS  Google Scholar 

  69. Lv, L.; Lu, R. H.; Zhu, J. X.; Yu, R. H.; Zhang, W.; Cui, E. H.; Chen, X. B.; Dai, Y. H.; Cui, L. M.; Li, J. et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2023, 62, e202303117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 22138013) and the Taishan Scholar Project (No. ts201712020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengdi Zhang or Mingbo Wu.

Electronic Supplementary Material

12274_2024_6866_MOESM1_ESM.pdf

LiOH-mediated crystallization regulating strategy enhancing electrochemical performance and structural stability of SiO anodes for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Xu, Z., Long, Y. et al. LiOH-mediated crystallization regulating strategy enhancing electrochemical performance and structural stability of SiO anodes for lithium-ion batteries. Nano Res. 17, 8174–8183 (2024). https://doi.org/10.1007/s12274-024-6866-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6866-0

Keywords