Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Advancing Medical Imaging Through Generative Adversarial Networks: A Comprehensive Review and Future Prospects

  • Review
  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In medical imaging, traditional methods have long been relied upon. However, the integration of Generative Adversarial Networks (GANs) has sparked a paradigm shift, ushering in a new era of innovation. Our comprehensive investigation explores the groundbreaking impact of GANs on medical imaging, examining the evolution from traditional techniques to GAN-driven approaches. Through meticulous analysis, we dissect various aspects of GANs, encompassing their taxonomy, historical progression, and diverse iterations such as Self-Attention GANs (SAGAN), Conditional GANs, and Progressive Growing GANs (PGGAN). Complemented by a practical case study, we scrutinize the extensive applications of GANs, spanning image generation, reconstruction, enhancement, segmentation, and super-resolution. Despite promising prospects, enduring challenges including data scarcity, interpretability issues, and ethical concerns persist. Looking ahead, we anticipate advancements in personalized and pathological image generation, cross-modal synthesis, real-time interactive image generation, and enhanced anomaly detection. Through this review, we underscore the transformative potential of GANs in reshaping medical imaging practices, while also outlining avenues for future research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57.

    Article  Google Scholar 

  2. Hussain S, Mubeen I, Ullah N, Shah SSUD, Khan BA, Zahoor M, Ullah R, Khan FA, Sultan MA. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. Biomed Res Int. 2022;2022:5164970. https://doi.org/10.1155/2022/5164970.

    Article  Google Scholar 

  3. Alghamdi HS, Amoudi G, Elhag S, Saeedi K, Nasser J. Deep learning approaches for detecting COVID-19 from chest x-ray images: a survey. IEEE Access. 2021;9:20235–54.

    Article  Google Scholar 

  4. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng. 2021;14:4–15.

    Article  Google Scholar 

  5. Sluimer I, Schilham A, Prokop M, van Ginneken B. Computer analysis of computed tomography scans of the lung: a survey. IEEE Trans Med Imaging. 2006;25(4):385–405.

    Article  Google Scholar 

  6. Fan C-C, Peng L, Wang T, Yang H, Zhou X-H, Ni Z-L, Wang G, Chen S, Zhou Y-J, Hou Z-G. TR-GAN: multi-session future MRI prediction with temporal recurrent generative adversarial network. IEEE Trans Med Imaging. 2022;41(8):1925–37.

    Article  Google Scholar 

  7. Fenster A, Downey D. 3-D ultrasound imaging: a review. IEEE Eng Med Biol Mag. 1996;15(6):41–51.

    Article  Google Scholar 

  8. Pomper M, Hammoud D. Positron emission tomography in molecular imaging. IEEE Eng Med Biol Mag. 2004;23(4):28–37.

    Article  Google Scholar 

  9. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. EA-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2019;38(7):1750–62.

    Article  Google Scholar 

  10. Wagner HN, Conti PS. Advances in medical imaging for cancer diagnosis and treatment. Cancer. 2006;67(S4):1121–8.

    Article  Google Scholar 

  11. Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018;65(3):237–9.

    Article  Google Scholar 

  12. Diagnostic Imaging (DI) market size, share, trends and analysis by product type, region and segment forecast to 2033. 2024. https://www.globaldata.com/store/report/diagnostic-imaging-market-analysis. Accessed 7 Apr 2024.

  13. Nam D, Barrack RL, Potter HG. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clin Orthop. 2014;472(12):3665.

    Article  Google Scholar 

  14. Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health. 2009;6(6):1778.

    Article  Google Scholar 

  15. Feng E, Qin P, Chai R, Zeng J, Wang Q, Meng Y, Wang P. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health Inform. 2022;26(12):6047–57.

    Article  Google Scholar 

  16. Hamghalam M, Wang T, Qin J, Lei B. Transforming intensity distribution of brain lesions via conditional GANs for segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE; 2020. pp. 3–7. https://doi.org/10.1109/ISBI45749.2020.9098347.

  17. Weese J, Lorenz C. Four challenges in medical image analysis from an industrial perspective. Med Image Anal. 2016;33:44–9.

    Article  Google Scholar 

  18. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33.

    Article  Google Scholar 

  19. Preedanan W, Suzuki K, Kondo T, Kobayashi M, Tanaka H, Ishioka J, Matsuoka Y, Fujii Y, Kumazawa I. Improvement of urinary stone segmentation using GAN-based urinary stones inpainting augmentation. IEEE Access. 2022;10:115131–42.

  20. Kim E, Cho H-H, Kwon J, Oh Y-T, Ko ES, Park H. Tumor-attentive segmentation-guided GAN for synthesizing breast contrast-enhanced MRI without contrast agents. IEEE Journal of Translational Engineering in Health and Medicine. 2023;11:32–43.

  21. Geng M, Tian Z, Jiang Z, You Y, Feng X, Xia Y, Yang K, Ren Q, Meng X, Maier A, Lu Y. PMS-GAN: parallel multi-stream generative adversarial network for multi-material decomposition in spectral computed tomography. IEEE Trans Med Imaging. 2021;40(2):571–84.

    Article  Google Scholar 

  22. Bera S, Biswas PK. Noise conscious training of non local neural network powered by self attentive spectral normalized Markovian patch GAN for low dose CT denoising. IEEE Trans Med Imaging. 2021;40(12):3663–73.

    Article  Google Scholar 

  23. Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77.

    Article  Google Scholar 

  24. Qiao Z, Qian Z, Tang H, Gong G, Yin Y, Huang C, Fan W. CorGAN: Context aware recurrent generative adversarial network for medical image generation. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE Computer Society; 2020. pp. 1100–3. https://doi.org/10.1109/BIBM49941.2020.9313470.

  25. AlAmir M, AlGhamdi M. The role of generative adversarial network in medical image analysis: an in-depth survey. ACM Comput Surv. 2022;55(5):1–36.

    Article  Google Scholar 

  26. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society; 2017. pp. 1125–34. https://doi.org/10.1109/CVPR.2017.632.

  27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1.

    Google Scholar 

  28. Li X, Sun Q, Li L, Liu X, Liu H, Jiao L, Liu F. SSCV-GANs: semi-supervised complex-valued GANs for PolSAR image classification. IEEE Access. 2020;8:146560–76.

    Article  Google Scholar 

  29. Chamola V, Bansal G, Das TK, Hassija V, Reddy NSS, Wang J, Zeadally S, Hussain A, Yu FR, Guizani M, et al. Beyond reality: the pivotal role of generative AI in the metaverse. arXiv:2308.06272 [Preprint]. 2023. Available from: http://arxiv.org/abs/2308.06272.

  30. Jiang K, Wang Z, Yi P, Wang G, Lu T, Jiang J. Edge-enhanced GAN for remote sensing image superresolution. IEEE Trans Geosci Remote Sens. 2019;57(8):5799–812.

    Article  Google Scholar 

  31. Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging. 2019;38(1):167–79.

    Article  Google Scholar 

  32. Creswell A, Bharath AA. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(7):1967–74.

    Article  Google Scholar 

  33. Hardy C, Le Merrer E, Sericola B. MD-GAN: Multi-discriminator generative adversarial networks for distributed datasets. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society; 2019. pp. 866–77. https://doi.org/10.1109/IPDPS.2019.00095.

  34. Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D. 3D auto-context-based locality adaptive multi-modality GANs for pet synthesis. IEEE Trans Med Imaging. 2019;38(6):1328–39.

    Article  Google Scholar 

  35. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv:1411.1784 [Preprint]. 2014. Available from: http://arxiv.org/abs/1411.1784.

  36. Wang C, Xu C, Yao X, Tao D. Evolutionary generative adversarial networks. IEEE Trans Evol Comput. 2019;23(6):921–34.

    Article  Google Scholar 

  37. Huang J, Le Z, Ma Y, Fan F, Zhang H, Yang L. MGMDCGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access. 2020;8:55145–57.

    Article  Google Scholar 

  38. Ye H, Liang L, Li GY, Juang B-H. Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans Wireless Commun. 2020;19(5):3133–43.

    Article  Google Scholar 

  39. Rejusha TR, Vipin Kumar KS. Artificial MRI image generation using deep convolutional GAN and its comparison with other augmentation methods. In: 2021 International Conference on Communication, Control and Information Sciences (ICCISc), vol. 1. IEEE; 2021. pp. 16–8. https://doi.org/10.1109/ICCISc52257.2021.9484902.

  40. Abu Ebayyeh AARM, Danishvar S, Mousavi A. An improved capsule network (WaferCaps) for wafer bin map classification based on DCGAN data upsampling. IEEE Trans Semicond Manuf. 2022;35(1):50–9.

    Article  Google Scholar 

  41. Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096 [Preprint]. 2018. Available from: http://arxiv.org/abs/1809.11096.

  42. Vondrick C, Pirsiavash H, Torralba A. Generating videos with scene dynamics. Adv Neural Inf Proces Syst. 2016;29. https://www.researchgate.net/publication/307984819_Generating_Videos_with_Scene_Dynamics.

  43. Chang H, Lu J, Yu F, Finkelstein A. PairedCycleGAN: Asymmetric style transfer for applying and removing makeup. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. p. 40–8. https://doi.org/10.1109/CVPR.2018.00012.

  44. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P. Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans Med Imaging. 2020;39(7):2339–50.

    Article  Google Scholar 

  45. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.

    Article  Google Scholar 

  46. Tran N-T, Tran V-H, Nguyen N-B, Nguyen T-K, Cheung N-M. On data augmentation for GAN training. IEEE Trans Image Process. 2021;30:1882–97.

    Article  MathSciNet  Google Scholar 

  47. Zhan B, Li D, Wu X, Zhou J, Wang Y. Multi-modal MRI image synthesis via GAN with multi-scale gate mergence. IEEE J Biomed Health Inform. 2022;26(1):17–26.

  48. Subramaniam P, Kossen T, Ritter K, Hennemuth A, Hildebrand K, Hilbert A, Sobesky J, Livne M, Galinovic I, Khalil AA, Fiebach JB, Frey D, Madai VI. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Med Image Anal. 2022;78:102396.

    Article  Google Scholar 

  49. Emami H, Aliabadi MM, Dong M, Chinnam RB. SPA-GAN: spatial attention GAN for image-to-image translation. IEEE Trans Multimedia. 2021;23:391–401.

    Article  Google Scholar 

  50. Geng M, Meng X, Yu J, Zhu L, Jin L, Jiang Z, Qiu B, Li H, Kong H, Yuan J, et al. Content-noise complementary learning for medical image denoising. IEEE Trans Med Imaging. 2021;41(2):407–19.

    Article  Google Scholar 

  51. Nho Y-H, Ryu S, Kwon D-S. UI-GAN: generative adversarial network-based anomaly detection using user initial information for wearable devices. IEEE Sens J. 2021;21(8):9949–58.

    Article  Google Scholar 

  52. Sampath V, Maurtua I, Aguilar Martín JJ, Gutierrez A. A survey on generative adversarial networks for imbalance problems in computer vision tasks. J Big Data. 2021;8(1):1–59.

    Article  Google Scholar 

  53. Tai Y, Zhang L, Li Q, Zhu C, Chang V, Rodrigues JJPC, Guizani M. Digital-twin-enabled IoMT system for surgical simulation using RAC-GAN. IEEE Internet Things J. 2022;9(21):20918–31.

    Article  Google Scholar 

  54. Zhao Y, Ma B, Jiang P, Zeng D, Wang X, Li S. Prediction of Alzheimer’s disease progression with multi-information generative adversarial network. IEEE J Biomed Health Inform. 2021;25(3):711–9.

    Article  Google Scholar 

  55. Jung E, Luna M, Park SH. Conditional GAN with 3D discriminator for MRI generation of Alzheimer’s disease progression. Pattern Recognit. 2023;133:109061.

    Article  Google Scholar 

  56. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11.

    Article  Google Scholar 

  57. Santosh KC, Gaur L. Privacy, security, and ethical issues. In: Artificial Intelligence and Machine Learning in Public Healthcare. Singapore: Springer; 2022. p. 65–74.

    Google Scholar 

  58. Jung E, Luna M, Park SH. Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Cham, Switzerland: Springer; 2021. p. 318–28.

    Chapter  Google Scholar 

  59. Chen Z, Hao Z. The algorithms’ application in medical images GANs’ applications. In: ICMLCA 2021; 2nd International Conference on Machine Learning and Computer Application. VDE; 2021. pp. 17–9. https://ieeexplore.ieee.org/document/9736788.

  60. Kumar R, Malik R. A review on generative adversarial networks used for image reconstruction in medical imaging. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE; 2021. pp. 3–4. https://doi.org/10.1109/ICRITO51393.2021.9596487.

  61. Sikka A, Skand, Signh J, Bathula D. MRI to PET cross-modality translation using Globally and Locally Aware GAN (GLA-GAN) for multi-modal diagnosis of Alzheimer’s Disease. arXiv, 2021. https://www.researchgate.net/publication/353701761_MRI_to_PET_Cross-Modality_Translation_using_Globally_and_Locally_Aware_GAN_GLA-GAN_for_Multi-Modal_Diagnosis_of_Alzheimer’s_Disease.

  62. Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of gans for improved quality, stability, and variation. arXiv:1710.10196 [Preprint]. 2017. Available from: https://arxiv.org/abs/1710.10196.

  63. Kwon H-J, Shin D-H, Chung K. PGGAN-based anomaly classification on chest x-ray using weighted multi-scale similarity. IEEE Access. 2021;9:113315–25.

    Article  Google Scholar 

  64. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77.

    Article  Google Scholar 

  65. Zhang F, Bai J, Zhang J, Xiao Z, Pei C. An optimized training method for GAN-based hyperspectral image classification. IEEE Geosci Remote Sens Lett. 2021;18(10):1791–5.

    Article  Google Scholar 

  66. Togo R, Ogawa T, Haseyama M. Synthetic gastritis image generation via loss function-based conditional PGGAN. IEEE Access. 2019;7:87448–57.

    Article  Google Scholar 

  67. Han C, Rundo L, Araki R, Nagano Y, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access. 2019;7:156966–77.

    Article  Google Scholar 

  68. Zhang R, Lu W, Wei X, Zhu J, Jiang H, Liu Z, Gao J, Li X, Yu J, Yu M, Yu R. A progressive generative adversarial method for structurally inadequate medical image data augmentation. IEEE J Biomed Health Inform. 2022;26(1):7–16.

    Article  Google Scholar 

  69. Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform. 2020;24(7):1837–57.

    Article  Google Scholar 

  70. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inf Proces Syst. 2014;27:1.

    Google Scholar 

  71. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 5967–76. https://doi.org/10.48550/arXiv.1611.07004.

  72. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.

    Article  Google Scholar 

  73. Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J Biomed Health Inform. 2022;26(1):56–66.

    Article  Google Scholar 

  74. Litjens G, Kooi T, Ehteshami Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, Ginneken B, Sánchez C. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.

    Article  Google Scholar 

  75. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37(6):1348–57.

    Article  Google Scholar 

  76. Villani C. The Wasserstein distances. In: Optimal Transport: Old and New. Berlin, Germany: Springer; 2009. pp. 93–111. https://link.springer.com/book/10.1007/978-3-540-71050-9.

  77. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS. and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings 1. Springer; 2016. p. 170–8.

    Chapter  Google Scholar 

  78. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.

    Article  Google Scholar 

  79. Su J, Pellicer-Guridi R, Edwards T, Fuentes M, Rosen MS, Vegh V, Reutens D. A CNN based software gradiometer for electromagnetic background noise reduction in low field MRI applications. IEEE Trans Med Imaging. 2022;41(5):1007–16.

    Article  Google Scholar 

  80. Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G. Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging. 2021;40(8):2170–81.

    Article  Google Scholar 

  81. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv, 2014. https://doi.org/10.48550/arXiv.1411.1784.

  82. HaoQi G, Ogawara K. CGAN-based synthetic medical image augmentation between retinal fundus images and vessel segmented images. In: 2020 5th International Conference on Control and Robotics Engineering (ICCRE). IEEE; 2020. pp. 24–6. https://doi.org/10.1109/ICCRE49379.2020.9096438.

  83. Villani C, et al. Optimal transport: old and new. Springer; 2009.

    Book  Google Scholar 

  84. Ozbey M, Dalmaz O, Dar SU, Bedel HA, Ozturk S, Gungor A, Cukur T. Unsupervised medical image translation with adversarial diffusion models. IEEE Trans Med Imaging. 2023;42(12):3524–39. https://doi.org/10.1109/TMI.2023.3290149.

    Article  Google Scholar 

  85. Tao L, Ren H, Ye Y, Jiang J. Seismic surface-related multiples suppression based on SAGAN. IEEE Geosci Remote Sens Lett. 2022;19:1–5.

    Google Scholar 

  86. Cao Y, Sui B, Zhang W. REL-SAGAN: relative generation adversarial network integrated with attention mechanism for scene data augmentation of remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:3107–19.

    Article  Google Scholar 

  87. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV). 2017. pp. 2223–32. https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html. Accessed 15 May 2024.

  88. Zi Y, Xie F, Song X, Jiang Z, Zhang H. Thin cloud removal for remote sensing images using a physical-model-based CycleGAN with unpaired data. IEEE Geosci Remote Sens Lett. 2022;19:1–5.

    Article  Google Scholar 

  89. Gu J, Ye JC. Adain-based tunable CycleGAN for efficient unsupervised low-dose CT denoising. IEEE Trans Comput Imaging. 2021;7:73–85.

    Article  Google Scholar 

  90. Hu C, Zhang P, Huang W. A novel face-based approach for the early diagnosis of Parkinson’s disease. In: 2021 International Conference on Information Technology and Biomedical Engineering (ICITBE). IEEE; 2021. pp. 24–6. https://doi.org/10.1109/ICITBE54178.2021.00061.

  91. Gilani SQ, Marques O. Skin lesion analysis using generative adversarial networks: a review. Multimed Tools Appl. 2023;82(19):30065–106.

    Article  Google Scholar 

  92. You Q, Wan C, Sun J, Shen J, Ye H, Yu Q. Fundus image enhancement method based on CycleGAN. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2019. pp. 23–7. https://doi.org/10.1109/EMBC.2019.8856950.

  93. Huang C-M, Wijanto E, Cheng H-C. Applying a pix2pix generative adversarial network to a Fourier-domain optical coherence tomography system for artifact elimination. IEEE Access. 2021;9:103311–24.

    Article  Google Scholar 

  94. Xu X, Zhao B, Tong X, Xie H, Feng Y, Wang C, Xiao C, Ke X, Du J. A data augmentation strategy combining a modified pix2pix model and the copy-paste operator for solid waste detection with remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens. 2022;15:8484–91.

    Article  Google Scholar 

  95. Popescu D, Deaconu M, Ichim L, Stamatescu G. Retinal blood vessel segmentation using pix2pix GAN. In: 2021 29th Mediterranean Conference on Control and Automation (MED). IEEE; 2021. pp. 22–5. https://doi.org/10.1109/MED51440.2021.9480169.

  96. Salehi P, Chalechale A. Pix2pix-based stain-to-stain translation: a solution for robust stain normalization in histopathology images analysis. In: 2020 International Conference on Machine Vision and Image Processing (MVIP). 2020. pp. 1–7. https://www.researchgate.net/publication/339016065_Pix2Pix-based_Stain-to-Stain_Translation_A_Solution_for_Robust_Stain_Normalization_in_Histopathology_Images_Analysis.

  97. Wang X, Gong J, Hu M, Gu Y, Ren F. Laun improved StarGAN for facial emotion recognition. IEEE Access. 2020;8:161509–18.

    Article  Google Scholar 

  98. Chen X, Zhang Z, Qiu A, Xia Z, Xiong NN. Novel coverless steganography method based on image selection and StarGAN. IEEE Trans Netw Sci Eng. 2022;9(1):219–30.

    Article  Google Scholar 

  99. Chou C-H, Han P-H, Chang C-C, Hsieh Y-Z. Garment style creator: using StarGAN for image-to-image translation of multidomain garments. IEEE Multimedia. 2022;29(1):85–93.

    Article  Google Scholar 

  100. Park H-C, Hong I-P, Poudel S, Choi C. Data augmentation based on generative adversarial networks for endoscopic image classification. IEEE Access. 2023;11:49216–25.

    Article  Google Scholar 

  101. Shaham TR, Dekel T, Michaeli T. SinGAN: Learning a generative model from a single natural image. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE Computer Society; 2019. pp. 4569–79. https://doi.org/10.1109/ICCV.2019.00467.

  102. Kelkar VA, Gotsis DS, Brooks FJ, Prabhat KC, Myers KJ, Zeng R, Anastasio MA. Assessing the ability of generative adversarial networks to learn canonical medical image statistics. IEEE Trans Med Imaging. 2023;42(6):1799–808.

    Article  Google Scholar 

  103. Chen Y, Zhong K, Wang F, Wang H, Zhao X. Surgical workflow image generation based on generative adversarial networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE; 2018. pp. 26–8. https://doi.org/10.1109/ICAIBD.2018.8396171.

  104. Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018. pp. 289–93. https://www.researchgate.net/publication/322329178_Synthetic_Data_Augmentation_using_GAN_for_Improved_Liver_Lesion_Classification.

  105. Mendes J, Pereira T, Silva F, Frade J, Morgado J, Freitas C, Negrão E, de Lima BF, da Silva MC, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Lung CT image synthesis using GANs. Expert Syst Appl. 2023;215:119350.

    Article  Google Scholar 

  106. Kumar R, Malik R. A review on generative adversarial networks used for image reconstruction in medical imaging. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE; 2021. pp. 3–4. https://doi.org/10.1109/ICRITO51393.2021.9596487.

  107. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion. ACM Trans Graph (ToG). 2017;36(4):1–14.

    Article  Google Scholar 

  108. Han C, Hayashi H, Rundo L, Araki R, Shimoda W, Muramatsu S, Furukawa Y, Mauri G, Nakayama H. GAN-based synthetic brain MR image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. pp. 4–7. https://doi.org/10.1109/ISBI.2018.8363678.

  109. Kumar R, Malik R. A review on generative adversarial networks used for image reconstruction in medical imaging. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE; 2021. pp. 3–4. https://doi.org/10.1109/ICRITO51393.2021.9596487.

  110. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C. ESRGAN: Enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 2018. https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.html. Accessed 15 May 2024.

  111. Wolterink JM, Leiner T, Viergever MA, Išgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    Article  Google Scholar 

  112. Liu K, Ye Z, Guo H, Cao D, Chen L, Wang F-Y. FISS GAN: a generative adversarial network for foggy image semantic segmentation. IEEE/CAA J Autom Sin. 2021;8(8):1428–39.

    Article  Google Scholar 

  113. Islam S, Aziz MT, Nabil HR, Jim JR, Mridha MF, Kabir MM, Asai N, Shin J. Generative adversarial networks (GANs) in medical imaging: advancements, applications, and challenges. IEEE Access. 2024;12:35728–53.

    Article  Google Scholar 

  114. Chen Y, Zhong K, Wang F, Wang H, Zhao X. Surgical workflow image generation based on generative adversarial networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE; 2018. pp. 26–8. https://doi.org/10.1109/ICAIBD.2018.8396171.

  115. Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, Lee PY, Shaw J, Ting D, Wong TY, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care. 2018;41(12):2509–16.

    Article  Google Scholar 

  116. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W. Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 4681–90. https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html. Accessed 15 May 2024.

  117. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C. ESRGAN: Enhanced super-resolution generative adversarial networks. arXiv, 2018. https://openaccess.thecvf.com/content_eccv_2018_workshops/w25/html/Wang_ESRGAN_Enhanced_Super-Resolution_Generative_Adversarial_Networks_ECCVW_2018_paper.html. Accessed 15 May 2024.

  118. Deecke L, Vandermeulen R, Ruff L, Mandt S, Kloft M. Image anomaly detection with generative adversarial networks: recognizing outstanding Ph.D. research. 2019. p. 3–17.

  119. Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ. Generating and designing DNA with deep generative models. arXiv:1712.06148 [Preprint]. 2017. Available from: http://arxiv.org/abs/1712.06148.

  120. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label discrete patient records using generative adversarial networks. In: Machine Learning for Healthcare Conference. PMLR; 2017. p. 286–305.

    Google Scholar 

  121. Jolicoeur-Martineau A. The relativistic discriminator: a key element missing from standard GAN. arxiv, 2018. https://doi.org/10.48550/arXiv.1807.00734.

  122. Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. arXiv:1703.10717 [Preprint]. 2017. Available from: http://arxiv.org/abs/1703.10717.

  123. Santana E, Hotz G. Learning a driving simulator. arXiv:1608.01230 [Preprint]. 2016. Available from: http://arxiv.org/abs/1608.01230.

  124. Gou C, Wu Y, Wang K, Wang F-Y, Ji Q. Learning-by-synthesis for accurate eye detection. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE; 2016. p. 3362–7.

    Google Scholar 

  125. Shrivastava A, Pfister T, Tuzel O, Susskind J, Wang W, Webb R. Learning from simulated and unsupervised images through adversarial training. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 2107–16. https://openaccess.thecvf.com/content_cvpr_2017/html/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.html. Accessed 15 May 2024.

  126. Zhang Y, Gan Z, Carin L. Generating text via adversarial training. In: NIPS Workshop on Adversarial Training, vol. 21. academia.edu; 2016. pp. 21–32.

  127. Pascual S, Bonafonte A, Serra J. SEGAN: speech enhancement generative adversarial network. arXiv:1703.09452 [Preprint]. 2017. Available from: http://arxiv.org/abs/1703.09452.

  128. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN. StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans Pattern Anal Mach Intell. 2019;41(8):1947–62.

    Article  Google Scholar 

  129. Yu L, Zhang W, Wang J, Yu Y. SeqGAN: Sequence generative adversarial nets with policy gradient. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1. 2017. https://ojs.aaai.org/index.php/AAAI/index. Accessed 15 May 2024.

  130. Hu W, Tan Y. Generating adversarial malware examples for black-box attacks based on GAN. In: International Conference on Data Mining and Big Data. Springer; 2022. p. 409–23.

    Chapter  Google Scholar 

  131. Ho J, Ermon S. Generative adversarial imitation learning. Adv Neural Inf Proces Syst. 2016;29. https://proceedings.neurips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html.

  132. Finn C, Christiano P, Abbeel P, Levine S. A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. arXiv:1611.03852 [Preprint]. 2016. Available from: http://arxiv.org/abs/1611.03852.

  133. Chidambaram M, Qi Y. Style transfer generative adversarial networks: learning to play chess differently. arXiv:1702.06762 [Preprint]. 2017. Available from: http://arxiv.org/abs/1702.06762.

  134. Terenz. 2023. https://terenz.ai/research/sci. Accessed 25 Sep 2023.

  135. Chakraborty S, Aich S, Kim H-C. Detection of Parkinson’s disease from 3T T1 weighted MRI scans using 3D convolutional neural network. Diagnostics. 2020;10(6):402. https://doi.org/10.3390/diagnostics10060402.

    Article  Google Scholar 

  136. Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109–27.

    Article  Google Scholar 

  137. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.

    Article  Google Scholar 

  138. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284–303.

    Article  Google Scholar 

  139. Kanezaki A, Matsushita Y, Nishida Y. RotationNet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints. 2018. pp. 5010–9. https://openaccess.thecvf.com/content_cvpr_2018/html/Kanezaki_RotationNet_Joint_Object_CVPR_2018_paper.html. Accessed 15 May 2024.

  140. Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Inf Fusion. 2023;91:134–48.

    Article  Google Scholar 

  141. Qin X, Bui FM, Nguyen HH, Han Z. Learning from limited and imbalanced medical images with finer synthetic images from GANs. IEEE Access. 2022;10:91663–77.

    Article  Google Scholar 

  142. Miyato T, Kataoka T, Koyama M, Yoshida Y. Spectral normalization for generative adversarial networks. arXiv, 2018. https://doi.org/10.48550/arXiv.1802.05957.

  143. Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. npj Digital Med. 2022;5(48):1–8.

    Google Scholar 

  144. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.

    Article  Google Scholar 

  145. Sorin V, Barash Y, Konen E, Klang E. Creating artificial images for radiology applications using generative adversarial networks (GANs) - a systematic review. Acad Radiol. 2020;27(8):1175–85.

    Article  Google Scholar 

  146. Huang Y, Zheng F, Cong R, Huang W, Scott MR, Shao L. MCMT-GAN: multi-task coherent modality transferable GAN for 3D brain image synthesis. IEEE Trans Image Process. 2020;29:8187–98.

    Article  Google Scholar 

  147. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

    Article  Google Scholar 

  148. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.

    Article  Google Scholar 

  149. Teng Q, Liu Z, Song Y, Han K, Lu Y. A survey on the interpretability of deep learning in medical diagnosis. Multimedia Syst. 2022;28(6):2335–55.

    Article  Google Scholar 

  150. Pan Z, Yu W, Yi X, Khan A, Yuan F, Zheng Y. Recent progress on generative adversarial networks (GANs): a survey. IEEE Access. 2019;7:36322–33.

    Article  Google Scholar 

  151. Zhou T, Li Q, Lu H, Cheng Q, Zhang X. GAN review: models and medical image fusion applications. Information Fusion. 2023;91:134–48.

    Article  Google Scholar 

  152. Ding C, Xiao R, Do DH, Lee DS, Lee RJ, Kalantarian S, Hu X. Log-spectral matching GAN: PPG-based atrial fibrillation detection can be enhanced by GAN-based data augmentation with integration of spectral loss. IEEE J Biomed Health Inf. 2023;27(3):1331–41.

    Article  Google Scholar 

  153. Wang Y. Survey on deep multi-modal data analytics: Collaboration, rivalry and fusion. ACM Trans Multimed Comput Commun Appl. 2021;17(1s):1–25. https://doi.org/10.1145/3408317.

    Article  Google Scholar 

  154. Nallamothu LH, Ramisetti TP, Mekala VK, Aramandla K, Duvvada RR. Interactive image generation using cycle GAN over AWS cloud. In: Proceedings of Third International Conference on Sustainable Expert Systems. Singapore: Springer; 2023. p. 411–24.

    Chapter  Google Scholar 

  155. Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE; 2018. pp. 4–7. https://doi.org/10.1109/ISBI.2018.8363576.

  156. Goyal A, Mandal M, Hassija V, Aloqaily M, Chamola V. Captionomaly: a deep learning toolbox for anomaly captioning in social surveillance systems. IEEE Trans Comput Soc Syst. 2023;11(1):207–15. https://doi.org/10.1109/TCSS.2022.3230262.

    Article  Google Scholar 

  157. Chen RJ, Lu MY, Chen TY, Williamson DFK, Mahmood F. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng. 2021;5:493–7.

    Article  Google Scholar 

  158. Hassija V, Chamola V, Bajpai BC, Naren, Zeadally S. Security issues in implantable medical devices: fact or fiction? Sustain Cities Soc. 2021;66:102552.

    Article  Google Scholar 

  159. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.

    Article  Google Scholar 

  160. Tian D, Jiang S, Zhang L, Lu X, Xu Y. The role of large language models in medical image processing: a narrative review. Quant Imaging Med Surg. 2024;14(1):1108.

    Article  Google Scholar 

  161. Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, Choi E, Hong G-S, Kim N. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol. 2024;25(3):224–42.

  162. Nguyen LX, Aung PS, Le HQ, Park S-B, Hong CS. A new chapter for medical image generation: the stable diffusion method. In: 2023 International Conference on Information Networking (ICOIN). IEEE; 2023. pp. 11–4. https://doi.org/10.1109/ICOIN56518.2023.10049010.

Download references

Funding

No funding was obtained for the above work.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in close collaboration between all co-authors. They first defined the research theme and contributed an early map of the review, further they refined the map, and wrote the paper. All authors have contributed to, seen, and approved the final manuscript.

Corresponding author

Correspondence to Vinay Chamola.

Ethics declarations

Ethical Approval

This article does not involve any research or experiments conducted on human participants or animals by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamo, A.A., Gebresilassie, B.G., Mukherjee, A. et al. Advancing Medical Imaging Through Generative Adversarial Networks: A Comprehensive Review and Future Prospects. Cogn Comput (2024). https://doi.org/10.1007/s12559-024-10291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12559-024-10291-3

Keywords