Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Carbon materials: The burgeoning promise in electronics

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numerous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost efficiency, material quality, and device design, accelerating the promise of carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Service, Is silicon’s reign nearing its end?, Science, 323(2009), No. 5917, p. 1000.

    Article  CAS  Google Scholar 

  2. M.M. Waldrop, The chips are down for Moore’s law, Nature, 530(2016), No. 7589, p. 144.

    Article  CAS  Google Scholar 

  3. A. Raychowdhury and K. Roy, Carbon nanotube electronics: Design of high-performance and low-power digital circuits, IEEE Trans. Circuits Syst. I: Regul. Pap., 54(2007), No. 11, p. 2391.

    Article  Google Scholar 

  4. S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363(1993), No. 6430, p. 603.

    Article  CAS  Google Scholar 

  5. L.M. Peng, Z.Y. Zhang, and C.G. Qiu, Carbon nanotube digital electronics, Nat. Electron., 2(2019), No. 11, p. 499.

    Article  CAS  Google Scholar 

  6. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, Benchmarking nanotechnology for high-performance and low-power logic transistor applications, IEEE Trans. Nanotechnol., 4(2005), No. 2, p. 153.

    Article  Google Scholar 

  7. L.M. Peng, Z.Y. Zhang, and S. Wang, Carbon nanotube electronics: Recent advances, Mater. Today, 17(2014), No. 9, p. 433.

    Article  CAS  Google Scholar 

  8. P. Avouris, Graphene: electronic and photonic properties and devices, Nano Lett., 10(2010), No. 11, p. 4285.

    Article  CAS  Google Scholar 

  9. F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, and K. Ensslin, Electronic properties of graphene nanostructures, J. Phys.: Condens. Matter, 23(2011), No. 24, art. No. 243201.

  10. G.A.J. Amaratunga, A dawn for carbon electronics, Science, 297(2002), No. 5587, p. 1657.

    Article  CAS  Google Scholar 

  11. R.J. Nemanich, J.A. Carlisle, A. Hirata, and K. Haenen, CVD diamond—Research, applications, and challenges, MRS Bull., 39(2014), No. 6, p. 490.

    Article  CAS  Google Scholar 

  12. Z.B. Tan, D. Zhang, H.R. Tian, Q.Q. Wu, S.J. Hou, J.C. Pi, H. Sadeghi, Z. Tang, Y. Yang, J.Y. Liu, Y.Z. Tan, Z.B. Chen, J. Shi, Z.Y. Xiao, C. Lambert, S.Y. Xie, and W.J. Hong, Atomically defined angstrom-scale all-carbon junctions, Nat. Commun., 10(2019), art. No. 1748.

  13. D.A. Horner, M. Sternberg, P. Zapol, and L.A. Curtiss, Carbon nanotunnels form from single-walled carbon nanotubes interacting with a diamond (100)-(2×1) surface, Diam. Relat. Mater., 20(2011), No. 8, p. 1103.

    Article  CAS  Google Scholar 

  14. N. Hamada, S.I. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett., 68(1992), No. 10, p. 1579.

    Article  CAS  Google Scholar 

  15. M. Knupfer, Electronic properties of carbon nanostructures, Surf. Sci. Rep., 42(2001), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  16. P. Avouris, Z.H. Chen, and V. Perebeinos, Carbon-based electronics, Nat. Nanotechenol., 2(2007), No. 10, p. 605.

    Article  CAS  Google Scholar 

  17. M.P. Anantram and F. Léonard, Physics of carbon nanotube electronic devices, Rep. Prog. Phys., 69(2006), No. 3, p. 507.

    Article  CAS  Google Scholar 

  18. H. Huang, X.Q. Liu, F. Liu, C.S. Liu, X.L. Liang, Z.H. Zhang, K.H. Liu, X.Z. Zhao, and L. Liao, Comprehensive insights into effect of van der Waals contact on carbon nanotube network field-effect transistors, Appl. Phys. Lett., 115(2019), No. 17, art. No. 173503.

  19. Y.Q. Wu, D.B. Farmer, F.N. Xia, and P. Avouris, Graphene electronics: Materials, devices, and circuits, Proc. IEEE, 101(2013), No. 7, p. 1620.

    Article  CAS  Google Scholar 

  20. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81(2009), No. 1, p. 109.

    Article  CAS  Google Scholar 

  21. J.G. Wang, F.C. Ma, W.J. Liang, and M.T. Sun, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Mater. Today Phys., 2(2017), p. 6.

    Article  Google Scholar 

  22. G. Yang, L.H. Li, W.B. Lee, and M.C. Ng, Structure of graphene and its disorders: A review, Sci. Technol. Adv. Mater., 19(2018), No. 1, p. 613.

    Article  CAS  Google Scholar 

  23. G.H. Lu, K.H. Yu, Z.H. Wen, and J.H. Chen, Semiconducting graphene: Converting graphene from semimetal to semiconductor, Nanoscale, 5(2013), No. 4, p. 1353.

    Article  CAS  Google Scholar 

  24. M.S. Nevius, M. Conrad, F. Wang, A. Celis, M.N. Nair, A. Taleb-Ibrahimi, A. Tejeda, and E.H. Conrad, Semiconducting graphene from highly ordered substrate interactions, Phys. Rev. Lett., 115(2015), No. 13, art. No. 136802.

  25. L. Ma, J.L. Wang, and F. Ding, Recent progress and challenges in graphene nanoribbon synthesis, ChemPhysChen, 14(2013), No. 1, p. 47.

    Article  CAS  Google Scholar 

  26. R. Thomale, Electronics tuned in twisted bilayer graphene, Nature, 583(2020), No. 7816, p. 364.

    Article  CAS  Google Scholar 

  27. F.Y. Liu, W.T. Navaraj, N. Yogeswaran, D.H. Gregory, and R. Dahiya, Van der waals contact engineering of graphene field-effect transistors for large-area flexible electronics, ACS Nano, 13(2019), No. 3, p. 3257.

    Article  CAS  Google Scholar 

  28. Z.G. Wang, X.Y. Xiong, J.H. Li, and M.D. Dong, Screening Fermi-level pinning effect through van der waals contacts to monolayer MoS2, Mater. Today Phys., 16(2021), art. No. 100290.

  29. A.D. Franklin, M. Luisier, S.J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, and W. Haensch, Sub-10 nm carbon nanotube transistor, Nano Lett., 12(2012), No. 2, p. 758.

    Article  CAS  Google Scholar 

  30. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2(2017), No. 8, p. 1.

    Article  Google Scholar 

  31. T.C. Qin, Z.G. Wang, Y.Q. Wang, F. Besenbacher, M. Otyepka, and M.D. Dong, Recent progress in emerging two-dimensional transition metal carbides, Nneo Micro Lett., 13(2021), No. 1, p. 1.

    CAS  Google Scholar 

  32. F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367.

  33. X.M. Li, L. Tao, Z.F. Chen, H. Fang, X.S. Li, X.R. Wang, J.B. Xu, and H.W. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics, Appl. Phys. Rev., 4(2017), No. 2, art. No. 021306.

  34. N.O. Weiss, H.L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X.F. Duan, Graphene: an emerging electronic material, Adv. Mater., 24(2012), No. 43, p. 5782.

    Article  CAS  Google Scholar 

  35. S.N. Shen, W. Shen, S. Liu, H. Li, Y.H. Chen, and H.Q. Qi, First-principles calculations of co-doping impurities in diamond, Mater. Today Commun., 23(2020), art. No. 100847.

  36. H.C. Yang, Y.D. Ma, and Y. Dai, Progress of structural and electronic properties of diamond: A mini review, Funct. Diam., 1(2021), No. 1, p. 150.

    Article  Google Scholar 

  37. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, and G.A. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond, Science, 297(2002), No. 5587, p. 1670.

    Article  CAS  Google Scholar 

  38. C.E. Nebel, Nitrogen-vacancy doped CVD diamond for quantum applications: A review, Semicond. Semimet., 103(2020), p. 73.

    Article  CAS  Google Scholar 

  39. C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1–2, p. 22.

    Article  CAS  Google Scholar 

  40. I. Stenger, M.A. Pinault-Thaury, T. Kociniewski, A. Lusson, E. Chikoidze, F. Jomard, Y. Dumont, J. Chevallier, and J. Barjon, Impurity-to-band activation energy in phosphorus doped diamond, J. Appl. Phys., 114(2013), No. 7, art. No. 073711.

  41. I. Sakaguchi, M.N. Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, and T. Ando, Sulfur: A donor dopant for n-type diamond semiconductors, Phys. Rev. B, 60(1999), No. 4, p. R2139.

    Article  CAS  Google Scholar 

  42. S. Bhattacharyya, O. Auciello, J. Birrell, J.A. Carlisle, L.A. Curtiss, A.N. Goyette, D.M. Gruen, A.R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Appl. Phys. Lett., 79(2001), No. 10, p. 1441.

    Article  CAS  Google Scholar 

  43. T. Teraji, S. Koizumi, and Y. Koide, Ohmic contact for p-type diamond without postannealing, J. Appl. Phys., 104(2008), No. 1, art. No. 016104.

  44. M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, and J.W. Park, Growth of carbon nanotubes by chemical vapor deposition, Diam. Relat. Mater., 10(2001), No. 3–7, p. 1235.

    Article  CAS  Google Scholar 

  45. Z.X. Zhu, N. Wei, W.J. Cheng, B.Y. Shen, S.L. Sun, J. Gao, Q. Wen, R.F. Zhang, J. Xu, Y. Wang, and F. Wei, Rate-selected growth of ultrapure semiconducting carbon nanotube arrays, Nat. Commun., 10(2019), art. No. 4467.

  46. L. Lin, B. Deng, J.Y. Sun, H.L. Peng, and Z.F. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene, Chem. Rev., 118(2018), No. 18, p. 9281.

    Article  CAS  Google Scholar 

  47. B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179.

    Article  Google Scholar 

  48. M.H. Wang, M. Huang, D. Luo, Y.Q. Li, M. Choe, W.K. Seong, M. Kim, S. Jin, M.R. Wang, S. Chatterjee, Y. Kwon, Z. Lee, and R.S. Ruoff, Single-crystal, large-area, fold-free monolayer graphene, Nature, 596(2021), No. 7873, p. 519.

    Article  CAS  Google Scholar 

  49. M. Schwander and K. Partes, A review of diamond synthesis by CVD processes, Diam. Relat. Mater., 20(2011), No. 9, p. 1287.

    Article  CAS  Google Scholar 

  50. A.D. Franklin, The road to carbon nanotube transistors, Nature, 498(2013), No. 7455, p. 443.

    Article  CAS  Google Scholar 

  51. L. Ding, S.B. Liang, T. Pei, Z.Y. Zhang, S. Wang, W.W. Zhou, J. Liu, and L.M. Peng, Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V, Appl. Phys. Lett., 100(2012), No. 26, art. No. 263116.

  52. C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, and L.M. Peng, Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science, 355(2017), No. 6322, p. 271.

    Article  CAS  Google Scholar 

  53. K. Tamersit, Improving the performance of a junctionless carbon nanotube field-effect transistor using a split-gate, AEU Int. J. Electron. Commun., 115(2020), art. No. 153035.

  54. M.D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy, S. Fuller, J. Humes, A. Ratkovich, M. Nelson, and M.M. Shulaker, Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities, Nat. Electron., 3(2020), No. 8, p. 492.

    Article  CAS  Google Scholar 

  55. D.M. Sun, C. Liu, W.C. Ren, and H.M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors, Small, 9(2013), No. 8, p. 1188.

    Article  CAS  Google Scholar 

  56. Y. Choi, J. Kang, E.B. Secor, J. Sun, H. Kim, J.A. Lim, M.S. Kang, M.C. Hersam, and J.H. Cho, Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802610.

  57. L.J. Liu, J. Han, L. Xu, J.S. Zhou, C.Y. Zhao, S.J. Ding, H.W. Shi, M.M. Xiao, L. Ding, Z. Ma, C.H. Jin, Z.Y. Zhang, and L.M. Peng, Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics, Science, 368(2020), No. 6493, p. 850.

    Article  CAS  Google Scholar 

  58. M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.Y. Chen, H.S.P. Wong, and S. Mitra, Carbon nanotube computer, Nature, 501(2013), No. 7468, p. 526.

    Article  CAS  Google Scholar 

  59. G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M.M. Shulaker, Modern microprocessor built from complementary carbon nanotube transistors, Nature, 572(2019), No. 7771, p. 595.

    Article  CAS  Google Scholar 

  60. S.J. Han, J.S. Tang, B. Kumar, A. Falk, D. Farmer, G. Tulevski, K. Jenkins, A. Afzali, S. Oida, J. Ott, J. Hannon, and W. Haensch, High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes, Nat. Nanotechnol., 12(2017), No. 9, p. 861.

    Article  CAS  Google Scholar 

  61. Q. Cao, H.S. Kim, N. Pimparkar, J.P. Kulkarni, C.J. Wang, M. Shim, K. Roy, M.A. Alam, and J.A. Rogers, Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates, Nature, 454(2008), No. 7203, p. 495.

    Article  CAS  Google Scholar 

  62. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, and K.J. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol., 6(2011), No. 5, p. 296.

    Article  CAS  Google Scholar 

  63. J.D. Harvey, H.A. Baker, M.V. Ortiz, A. Kentsis, and D.A. Heller, HIV detection via a carbon nanotube RNA sensor, ACS Sens., 4(2019), No. 5, p. 1236.

    Article  CAS  Google Scholar 

  64. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M.M. Kappes, G. Gol’Tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W.H.P. Pernice, Fully integrated quantum photonic circuit with an electrically driven light source, Nat. Photonics, 10(2016), No. 11, p. 727.

    Article  CAS  Google Scholar 

  65. X.W. He, N.F. Hartmann, X.D. Ma, Y. Kim, R. Ihly, J.L. Blackburn, W.L. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, and S.K. Doorn, Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes, Nat. Photonics, 11(2017), No. 9, p. 577.

    Article  CAS  Google Scholar 

  66. T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A.A. Bol, D.B. Farmer, and P. Avouris, Efficient narrow-band light emission from a single carbon nanotube p-n diode, Nat. Nanotechnol., 5(2010), No. 1, p. 27.

    Article  CAS  Google Scholar 

  67. Y. Hanein, Carbon nanotube integration into MEMS devices, Phys. Status Solidi B, 247(2010), No. 11–12, p. 2635.

    Article  CAS  Google Scholar 

  68. A.D. Slattery, C.J. Shearer, J.G. Shapter, J.S. Quinton, and C.T. Gibson, Solution based methods for the fabrication of carbon nanotube modified atomic force microscopy probes, Nanomaterials, 7(2017), No. 11, art. No. 346.

  69. T. Tachizaki, T. Nakata, K.F. Zhang, I. Yamakawa, and S.I. Taniguchi, Nanometer-precise optical length measurement using near-field scanning optical microscopy with sharpened single carbon nanotube probe, Ultramicroscopy, 186(2018), p. 18.

    Article  CAS  Google Scholar 

  70. Y. Zheng, G.X. Ni, C.T. Toh, C.Y. Tan, K. Yao, and B. Özyilmaz, Graphene field-effect transistors with ferroelectric gating, Phys. Rev. Lett., 105(2010), No. 16, art. No. 166602.

  71. S.R. Li, J.H. Li, Y.C. Wang, C.L. Yu, Y.X. Li, W.H. Duan, Y.Y. Wang, and J.S. Zhang, Large transport gap modulation in graphene via electric-field-controlled reversible hydrogenation, Nat. Electron., 4(2021), No. 4, p. 254.

    Article  CAS  Google Scholar 

  72. Z.G. Wang, J.B. Liu, X. Hao, Y. Wang, Y.F. Chen, P.J. Li, and M.D. Dong, Investigating the stability of molecule doped graphene field effect transistors, New J. Chem., 43(2019), No. 38, p. 15275.

    Article  CAS  Google Scholar 

  73. T. Deng, Z.H. Zhang, Y.X. Liu, Y.X. Wang, F. Su, S.S. Li, Y. Zhang, H. Li, H.J. Chen, Z.R. Zhao, Y. Li, and Z. Liu, Three-dimensional graphene field-effect transistors as high-performance photodetectors, Nano Lett., 19(2019), No. 3, p. 1494.

    Article  CAS  Google Scholar 

  74. M. Asad, M. Bonmann, X.X. Yang, A. Vorobiev, K. Jeppson, L. Banszerus, M. Otto, C. Stampfer, D. Neumaier, and J. Stake, The dependence of the high-frequency performance of graphene field-effect transistors on channel transport properties, IEEE J. Electron Devices Soc., 8(2020), p. 457.

    Article  CAS  Google Scholar 

  75. M. Bonmann, M. Asad, X.X. Yang, A. Generalov, A. Vorobiev, L. Banszerus, C. Stampfer, M. Otto, D. Neumaier, and J. Stake, Graphene field-effect transistors with high extrinsic fT and fmax, IEEE Electron Device Lett., 40(2019), No. 1, p. 131.

    Article  CAS  Google Scholar 

  76. M.F.B. Aissa, H. Rezgui, F. Nasri, H. Belmabrouk, and A. Guizani, Thermal transport in graphene field-effect transistors with ultrashort channel length, Superlattices Microstruct., 128(2019), p. 265.

    Article  Google Scholar 

  77. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors, Nat. Mater., 11(2012), No. 10, p. 865.

    Article  CAS  Google Scholar 

  78. S.J. Han, A.V. Garcia, S. Oida, K.A. Jenkins, and W. Haensch, Graphene radio frequency receiver integrated circuit, Nat. Commun., 5(2014), No. 1, p. 1.

    Article  Google Scholar 

  79. H.M. Lv, H.Q. Wu, J.B. Liu, C. Huang, J.F. Li, J.H. Yu, J.B. Niu, Q.X. Xu, Z.P. Yu, and H. Qian, Inverted process for graphene integrated circuits fabrication, Nanoscale, 6(2014), No. 11, p. 5826.

    Article  CAS  Google Scholar 

  80. M. Bianchi, E. Guerriero, M. Fiocco, R. Alberti, L. Polloni, A. Behnam, E.A. Carrion, E. Pop, and R. Sordan, Scaling of graphene integrated circuits, Nanoscale, 7(2015), No. 17, p. 8076.

    Article  CAS  Google Scholar 

  81. T. Mueller, F.N. Xia, and P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photonics, 4(2010), No. 5, p. 297.

    Article  CAS  Google Scholar 

  82. J.H. Kang, D. Sarkar, Y. Khatami, and K. Banerjee, Proposal for all-graphene monolithic logic circuits, Appl. Phys. Lett., 103(2013), No. 8, art. No. 083113.

  83. J.H. Chen, M. Ishigami, C. Jang, D.R. Hines, M.S. Fuhrer, and E.D. Williams, Printed graphene circuits, Adv. Mater., 19(2007), No. 21, p. 3623.

    Article  CAS  Google Scholar 

  84. W.J. Hyun, O.O. Park, and B.D. Chin, Foldable graphene electronic circuits based on paper substrates, Adv. Mater., 25(2013), No. 34, p. 4729.

    Article  CAS  Google Scholar 

  85. Y. Ohno, K. Maehashi, and K. Matsumoto, Chemical and biological sensing applications based on graphene field-effect transistors, Biosens. Bioelectron., 26(2010), No. 4, p. 1727.

    Article  CAS  Google Scholar 

  86. B. Kumar, K. Min, M. Bashirzadeh, A.B. Farimani, M.H. Bae, D. Estrada, Y.D. Kim, P. Yasaei, Y.D. Park, E. Pop, N.R. Aluru, and A. Salehi-Khojin, The role of external defects in chemical sensing of graphene field-effect transistors, Nano Lett., 13(2013), No. 5, p. 1962.

    Article  CAS  Google Scholar 

  87. G.S. Kulkarni, K. Reddy, Z.H. Zhong, and X.D. Fan, Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection, Nat. Commun., 5(2014), art. No. 4376.

  88. V.T. Le, Y. Vasseghian, E.N. Dragoi, M. Moradi, and A.M. Khaneghah, A review on graphene-based electrochemical sensor for mycotoxins detection, Food Chem. Toxicol., 148(2021), art. No. 111931.

  89. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. Mc-Alpine, Graphene-based wireless bacteria detection on tooth enamel, Nat. Commun., 3(2012), art. No. 763.

  90. E.D. Walsh, D.K. Efetov, G.H. Lee, M. Heuck, J. Crossno, T.A. Ohki, P. Kim, D. Englund, and K.C. Fong, Graphene-based Josephson-junction single-photon detector, Phys. Rev. Appl., 8(2017), No. 2, art. No. 024022.

  91. J. Warbinek, D. Leimbach, D. Lu, K. Wendt, D.J. Pegg, A. Yurgens, D. Hanstorp, and J. Welander, A graphene-based neutral particle detector, Appl. Phys. Lett., 114(2019), No. 6, art. No. 061902.

  92. Z. Yang, Y. Pang, X.L. Han, Y.F. Yang, J. Ling, M.Q. Jian, Y.Y. Zhang, Y. Yang, and T.L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection, ACS Nano, 12(2018), No. 9, p. 9134.

    Article  CAS  Google Scholar 

  93. T. Gu, N. Petrone, J.F. McMillan, A. van der Zande, M. Yu, G.Q. Lo, D.L. Kwong, J. Hone, and C.W. Wong, Regenerative oscillation and four-wave mixing in graphene optoelectronics, Nat. Photonics, 6(2012), No. 8, p. 554.

    Article  CAS  Google Scholar 

  94. M.A. Giambra, V. Mišeikis, S. Pezzini, S. Marconi, A. Montanaro, F. Fabbri, V. Sorianello, A.C. Ferrari, C. Coletti, and M. Romagnoli, Wafer-scale integration of graphene-based photonic devices, ACS Nano, 15(2021), No. 2, p. 3171.

    Article  CAS  Google Scholar 

  95. M. Romagnoli, V. Sorianello, M. Midrio, F.H.L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A.C. Ferrari, Graphene-based integrated photonics for next-generation datacom and telecom, Nat. Rev. Mater., 3(2018), No. 10, p. 392.

    Article  CAS  Google Scholar 

  96. J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, Graphene-nanoplatelet-based photomechanical actuators, Nanotechnology, 23(2012), No. 4, art. No. 045501.

  97. S.E. Zhu, R. Shabani, J. Rho, Y. Kim, B.H. Hong, J.H. Ahn, and H.J. Cho, Graphene-based bimorph microactuators, Nano Lett., 11(2011), No. 3, p. 977.

    Article  CAS  Google Scholar 

  98. G.d.C. Rodrigues, P. Zelenovskiy, K. Romanyuk, S. Luchkin, Y. Kopelevich, and A. Kholkin, Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates, Nat. Commun., 6(2015), No. 1, p. 1.

    Google Scholar 

  99. C.F. Moldovan, W.A. Vitale, P. Sharma, L.S. Bernard, and A.M. Ionescu, Fabrication process and characterization of suspended graphene membranes for RF NEMS capacitive switches, Microelectron. Eng., 145(2015), p. 5.

    Article  CAS  Google Scholar 

  100. T. Szkopek and E. Martel, Suspended graphene electromechanical switches for energy efficient electronics, Prog. Quantum Electron., 76(2021), art. No. 100315.

  101. P. Sharma, J. Perruisseau-Carrier, C. Moldovan, and A.M. Ionescu, Electromagnetic performance of RF NEMS graphene capacitive switches, IEEE Trans. Nanotechnol., 13(2014), No. 1, p. 70.

    Article  CAS  Google Scholar 

  102. X.L. Yuan, Y.T. Zheng, X.H. Zhu, J.L. Liu, J.W. Liu, C.M. Li, P. Jin, and Z.G. Wang, Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1195.

    Article  CAS  Google Scholar 

  103. K.G. Crawford, J.D. Weil, P.B. Shah, D.A. Ruzmetov, M.R. Neupane, K. Kingkeo, A.G. Birdwell, and T.G. Ivanov, Diamond field-effect transistors with V2O5-induced transfer doping: Scaling to 50-nm gate length, IEEE Trans. Electron Devices, 67(2020), No. 6, p. 2270.

    Article  CAS  Google Scholar 

  104. S. Shikata, Single crystal diamond wafers for high power electronics, Diam. Relat. Mater., 65(2016), p. 168.

    Article  CAS  Google Scholar 

  105. N.C. Saha, T. Oishi, S. Kim, Y. Kawamata, K. Koyama, and M. Kasu, 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer, IEEE Electron Device Lett., 41(2020), No. 7, p. 1066.

    Article  CAS  Google Scholar 

  106. Z.B. Guo and T.P. Chow, Performance projection of high-voltage, quasi-lateral diamond MOSFET for power electronics applications, Diam. Relat. Mater., 104(2020), art. No. 107741.

  107. M. Iwataki, N. Oi, K. Horikawa, S. Amano, J. Nishimura, T. Kageura, M. Inaba, A. Hiraiwa, and H. Kawarada, Over 12000 A/cm2 and 3.2 mΩcm2 miniaturized vertical-type two-dimensional hole gas diamond MOSFET, IEEE Electron Device Lett., 41(2020), No. 1, p. 111.

    Article  Google Scholar 

  108. C.J. Zhou, J.J. Wang, J.C. Guo, C. Yu, Z.Z. He, Q.B. Liu, X.D. Gao, S.J. Cai, and Z.H. Feng, Radiofrequency performance of hydrogenated diamond MOSFETs with alumina, Appl. Phys. Lett., 114(2019), No. 6, art. No. 063501.

  109. X.X. Yu, W.X. Hu, J.J. Zhou, B. Liu, T. Tao, Y.C. Kong, T.S. Chen, and Y.D. Zheng, 1 W/mm output power density for Hterminated diamond MOSFETs with Al2O3/SiO2 Bi-layer passivation at 2 GHz, IEEE J. Electron Devices Soc., 9(2020), p. 160.

    Article  Google Scholar 

  110. H. Umezawa, S. Shikata, Y. Kato, Y. Mokuno, A. Seki, H. Suzuki, and T. Bessho, Characterization of insulated-gate bipolar transistor temperature on insulating, heat-spreading polycrystalline diamond substrate, Jpn. J. Appl. Phys., 56(2017), No. 1, art. No. 011301.

  111. J.W. Liu, T. Teraji, B. Da, and Y. Koide, High output current boron-doped diamond metal-semiconductor field-effect transistors, IEEE Electron Device Lett., 40(2019), No. 11, p. 1748.

    Article  CAS  Google Scholar 

  112. V.S. Bormashov, S.Y. Troschiev, S.A. Tarelkin, A.P. Volkov, D.V. Teteruk, A.V. Golovanov, M.S. Kuznetsov, N.V. Kornilov, S.A. Terentiev, and V.D. Blank, High power density nuclear battery prototype based on diamond Schottky diodes, Diam. Relat. Mater., 84(2018), p. 41.

    Article  CAS  Google Scholar 

  113. K. Su, Z.Y. Ren, J.F. Zhang, L.Y. Liu, J.C. Zhang, Y.C. Zhang, Q. He, C.F. Zhang, X.P. Ouyang, and Y. Hao, High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector, Appl. Phys. Lett., 116(2020), No. 9, art. No. 092104.

  114. G. Bassi, L. Bosisio, P. Cristaudo, M. Dorigo, A. Gabrielli, Y. Jin, C. La Licata, L. Lanceri, and L. Vitale, Calibration of diamond detectors for dosimetry in beam-loss monitoring, Nucl. Instrum. Methods Phys. Res. Sect. A, 1004(2021), art. No. 165383.

  115. N. Kurinsky, T.C. Yu, Y. Hochberg, and B. Cabrera, Diamond detectors for direct detection of sub-GeV dark matter, Phys. Rev. D, 99(2019), No. 12, art. No. 123005.

  116. M.Y. Liao, Progress in semiconductor diamond photodetectors and MEMS sensors, Funct. Diam., 1(2021), No. 1, p. 29.

    Article  Google Scholar 

  117. K.J. Sankaran, C.J. Yeh, S. Kunuku, J.P. Thomas, P. Pobedinskas, S. Drijkoningen, B. Sundaravel, K.C. Leou, K.T. Leung, M.K. van Bael, M. Schreck, I.N. Lin, and K. Haenen, Microstructural effect on the enhancement of field electron emission properties of nanocrystalline diamond films by Li-ion implantation and annealing processes, ACS Omega, 3(2018), No. 8, p. 9956.

    Article  CAS  Google Scholar 

  118. F. Lloret, K.J. Sankaran, J. Millan-Barba, D. Desta, R. Rouzbahani, P. Pobedinskas, M. Gutierrez, H.G. Boyen, and K. Haenen, Improved field electron emission properties of phosphorus and nitrogen co-doped nanocrystalline diamond films, Nanomaterials, 10(2020), No. 6, art. No. 1024.

  119. O. Auciello and D.M. Aslam, Review on advances in micro-crystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies, J. Mater. Sci., 56(2021), No. 12, p. 7171.

    Article  CAS  Google Scholar 

  120. Y. Tao, J.M. Boss, B.A. Moores, and C.L. Degen, Single-crystal diamond nanomechanical resonators with quality factors exceeding one million, Nat. Commun., 5(2014), art. No. 3638.

  121. T. Shibata, Y. Kitamoto, K. Unno, and E. Makino, Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst., 9(2000), No. 1, p. 47.

    Article  CAS  Google Scholar 

  122. M.Y. Liao, Z.W. Rong, S. Hishita, M. Imura, S. Koizumi, and Y. Koide, Nanoelectromechanical switch fabricated from single crystal diamond: Experiments and modeling, Diam. Relat. Mater., 24(2012), p. 69.

    Article  CAS  Google Scholar 

  123. J. Fu, F. Wang, T.F. Zhu, W. Wang, Z.C. Liu, F.N. Li, Z.C. Liu, G.A. Denu, J.W. Zhang, H.X. Wang, and X. Hou, Single crystal diamond cantilever for micro-electromechanical systems, Diam. Relat. Mater., 73(2017), p. 267.

    Article  CAS  Google Scholar 

  124. Y.T. Zheng, C.M. Li, J.L. Liu, J.J. Wei, and H.T. Ye, Diamond with nitrogen: States, control, and applications, Funct. Diam., 1(2021), No. 1, p. 63.

    Article  Google Scholar 

  125. K.O. Ho, Y. Shen, Y.Y. Pang, W.K. Leung, N. Zhao, and S. Yang, Diamond quantum sensors: From physics to applications on condensed matter research, Funct. Diam., 1(2021), No. 1, p. 160.

    Article  Google Scholar 

  126. K. Bian, W.T. Zheng, X.Z. Zeng, X.K. Chen, R. Stöhr, A. Denisenko, S. Yang, J. Wrachtrup, and Y. Jiang, Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition, Nat. Commun., 12(2021), No. 1, p. 1.

    Article  Google Scholar 

  127. M.J. Turner, N. Langellier, R. Bainbridge, D. Walters, S. Meesala, T.M. Babinec, P. Kehayias, A. Yacoby, E. Hu, M. Lončar, R.L. Walsworth, and E.V. Levine, Magnetic field fingerprinting of integrated-circuit activity with a quantum diamond microscope, Phys. Rev. Appl., 14(2020), No. 1, art. No. 014097.

  128. H. Rafii-Tabar, Computational modelling of thermo-mechanical and transport properties of carbon nanotubes, Phys. Rep., 390(2004), No. 4–5, p. 235.

    Article  CAS  Google Scholar 

  129. S.S. Zhang, Y.J. Wu, K. Luo, B. Liu, Y. Shu, Y. Zhang, L. Sun, Y.F. Gao, M.D. Ma, Z.H. Li, B.Z. Li, P. Ying, Z.S. Zhao, W.T. Hu, V. Benavides, O.P. Chernogorova, A.V. Soldatov, J.L. He, D.L. Yu, B. Xu, and Y.J. Tian, Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene, Cell Rep. Phys. Sci., 2(2021), No. 9, art. No. 100575.

  130. P. Pachfule, D. Shinde, M. Majumder, and Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework, Nat. Chem., 8(2016), No. 7, p. 718.

    Article  CAS  Google Scholar 

  131. P.B. Bennett, Z. Pedramrazi, A. Madani, Y.C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, and J. Bokor, Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett., 103(2013), No. 25, art. No. 253114.

  132. E.Z. Shi, H.B. Li, L. Yang, J.F. Hou, Y.C. Li, L. Li, A.Y. Cao, and Y. Fang, Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics, Adv. Mater., 27(2015), No. 4, p. 682.

    Article  CAS  Google Scholar 

  133. V.C. Tung, J.H. Huang, I. Tevis, F. Kim, J. Kim, C.W. Chu, S.I. Stupp, and J.X. Huang, Surfactant-free water-processable photoconductive all-carbon composite, J. Am. Chem. Soc., 133(2011), No. 13, p. 4940.

    Article  CAS  Google Scholar 

  134. C.G. Zhang, J. Meng, K. Ma, X. Jiao, and Z.H. Yuan, A three-dimensional structure of ternary carbon for high performance supercapacitor, Diam. Relat. Mater., 109(2020), art. No. 108075.

  135. C.H. Kang, C. Shen, M.S.M. Saheed, N.M. Mohamed, T.K. Ng, B.S. Ooi, and Z.A. Burhanudin, Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes, Appl. Phys. Lett., 109(2016), No. 8, art. No. 081902.

  136. S.H. Lu, Y.C. Wang, H.Y. Liu, M.S. Miao, and Y.M. Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nat. Commun., 5(2014), art. No. 3666.

  137. P.B. Li, Z.L. Xiang, P. Rabl, and F. Nori, Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes, Phys. Rev. Lett., 117(2016), No. 1, p. 015502.

    Article  Google Scholar 

  138. K. Kaiser, L.M. Scriven, F. Schulz, P. Gawel, L. Gross, and H.L. Anderson, An sp-hybridized molecular carbon allotrope, cyclo[18]carbon, Science, 365(2019), No. 6459, p. 1299.

    Article  CAS  Google Scholar 

  139. J.T. Wang, X. Jin, Z.B. Liu, G. Yu, Q.Q. Ji, H.M. Wei, J. Zhang, K. Zhang, D.Q. Li, Z. Yuan, J.C. Li, P. Liu, Y. Wu, Y. Wei, J.P. Wang, Q.Q. Li, L.N. Zhang, J. Kong, S.S. Fan, and K.L. Jiang, Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity, Nat. Catal., 1(2018), No. 5, p. 326.

    Article  CAS  Google Scholar 

  140. T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G.H. Fang, C.X. Zhu, S.C. Li, R. Beausoleil, H.S.P. Wong, T.C. Huang, K.T. Cheng, and Z.N. Bao, Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes, Nat. Commun., 10(2019), art. No. 2161.

  141. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A roadmap for graphene, Nature, 490(2012), No. 7419, p. 192.

    Article  CAS  Google Scholar 

  142. J.W. Liu, H. Ohsato, M.Y. Liao, M. Imura, E. Watanabe, and Y. Koide, Logic circuits with hydrogenated diamond field-effect transistors, IEEE Electron Device Lett., 38(2017), No. 7, p. 922.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFE0133200), National Natural Science Foundation of China (No. 52172037), European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme (No. 734578), Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2021 BH006), Beijing Municipal Natural Science Foundation (Nos. 2212036 and 4192038), and Science and Technology Innovation Special Project of Foshan Government (Nos. BK20BE021 and BK21BE004). Special thanks to the national high-level-university sponsored graduate program of China Scholarship Council (CSC), USTB-Monte Biance Joint R&D Center and joint-postdoc research program of Shunde Graduate School of USTB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Li.

Additional information

Conflict of interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Wei, J., Liu, J. et al. Carbon materials: The burgeoning promise in electronics. Int J Miner Metall Mater 29, 404–423 (2022). https://doi.org/10.1007/s12613-021-2358-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2358-3

Keywords