Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

How well the climate models simulate extreme temperature over East Asia and how the extreme indices would change under anthropogenic global warming are investigated. The indices studied include hot days (HD), tropical nights (TN), growing degree days (GDD), and cooling degree days (CDD) in summer and heating degree days (HDD) and frost days (FD) in winter. The representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2075–2099 are compared with historical simulations for the period of 1979–2005 from 15 coupled models that are participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). To optimally estimate future change and its uncertainty, groups of best models are selected based on Taylor diagrams, relative entropy, and probability density function (PDF) methods previously suggested. Overall, the best models’ multi-model ensemble based on Taylor diagrams has the lowest errors in reproducing temperature extremes in the present climate among three methods. Selected best models in three methods tend to project considerably different changes in the extreme indices from each other, indicating that the selection of reliable models are of critical importance to reduce uncertainties. Three groups of best models show significant increase of summerbased indices but decrease of the winter-based indices. Over East Asia, the most significant increase is seen in the HD (336 ± 23.4% of current climate) and the most significant decrease is appeared in the HDD (82 ± 4.2%). It is suggested that the larger future change in the HD is found over in the Southeastern China region, probably due to a higher local maximum temperature in the present climate. All of the indices show the largest uncertainty over Southeastern China, particularly in the TN (~3.9 times as large as uncertainty over East Asia) and in the HD (~2.4). It is further noted that the TN reveals the largest uncertainty over three East Asian countries (~1.7 and 1.4 over Korea and Japan, respectively). These future changes in extreme temperature events have an important implication for energy-saving applications and human molarity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, Q., 2012: Projected changes in Asian Summer Monsoons in RCP scenarios of CMIP5. Atmos. Oceanic Sci. Lett., 5, 43–48.

    Google Scholar 

  • Boer, G. J., and S. J. Lambert, 2001: Second order space-time climate difference statistics. Clim. Dynam., 17, 213–218.

    Article  Google Scholar 

  • Bolvin, D. T., R. F. Adler, G. J. Huffman, E. J. Nelkin, and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observation. J. Appl. Meteor. Climatol., 48, 1843–1857.

    Article  Google Scholar 

  • Buyukalaca, O., H. Bulut, and T. Yilmaz, 2001: Analysis of variable-base heating and cooling degree-days for Turkey. Appl. Energ., 69, 269–283.

    Article  Google Scholar 

  • Chen, H. P., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Sci. Bull., 58, 1462–1472, doi: 10.1007/s11434-012-5612-2.

    Article  Google Scholar 

  • Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chul, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Clim. Dynam., 43, 535–551.

    Article  Google Scholar 

  • Delsole, T., and M. K. Tippett, 2007: Predictability: recent insights form information theory. Rev. Geophys., 45, RD4002, doi:10.1029/2006-RG000202.

    Article  Google Scholar 

  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Kari, and L. O. Mearns, 2000: Climate extremes: observations, modeling and impacts. Science, 289, 2068–2074.

    Article  Google Scholar 

  • Frumkin, H., J. Hess, G. Luber, J. Malilay, and M. McGeehin, 2008: Climate change: the public health response. Am. J. Public Health, 98, 435–445.

    Article  Google Scholar 

  • Gao, X. J., Z. C. Zhao, and F. Giorgi, 2002: Changes of extreme events in regional climate simulations over East Asia. Adv. Atmos. Sci., 19, 927–942.

    Article  Google Scholar 

  • Gao, X. J., Y. Xu, Z. C. Zhao, J. S. Park, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia. Theor. Appl. Climatol., 86, 173–185.

    Article  Google Scholar 

  • Ha, K.-J., and K.-S. Yun, 2012: Climate change effects on tropical night days in Seoul, Korea. Theor. Appl. Climatol., 109, 191–203, doi:10. 1007/s00704-011-0573-y.

    Article  Google Scholar 

  • Heo, K.-Y., K.-J. Ha, K.-S. Yun, S.-S. Lee, H.-J. Kim, and B. Wang, 2014: Methods for uncertainty assessment of climate models and model predictions over East Asia. Int. J. Climatol., 34, 377–390.

    Article  Google Scholar 

  • Ho, C.-H., and Coauthors, 2011: A Projection of extreme climate events in the 21st century over East Asian using the community climate system model 3. Asia-Pac. J. Atmos. Sci., 47, 329–344.

    Article  Google Scholar 

  • Jones, P., and I. Harris, 2013: University of East Anglia Climatic Research Unit, CRU TS3.21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901 — Dec. 2012). NCAS British Atmospheric Data Centre.

    Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woolen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 513–524.

    Article  Google Scholar 

  • Kharin, V. V., F. Zwiers, X. Zhnag, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444.

    Article  Google Scholar 

  • Kiktev, D., J. Caesar, L. V. Alexander, H. Shiogama, and M. Collier, 2007: Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophy. Res. Lett., 34, L10702, doi:10.1029/2007GL029539.

    Article  Google Scholar 

  • Kim, J.-H., and J. I. Yun, 2008: On mapping growing degree-days (GDD) from monthly digital climate surfaces for South Korea. Korean J. Agric. Forest Meteor., 10(1), 1–8 (in Korean with English abstract).

    Article  Google Scholar 

  • Kim, O.-Y., B. Wang, and S.-H. Shin, 2013: How do weather characteristics change in a warming climate?. Clim. Dynam., 41, 3261–3281, doi:10.1007/s00382-013-1795-8.

    Article  Google Scholar 

  • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 2057–2072.

    Article  Google Scholar 

  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    Article  Google Scholar 

  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Clim. Dynam., 42, 101–119.

    Article  Google Scholar 

  • Lee, J.-Y., and B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014a: Future change of Northern Hemisphere summer tropicalextratropical teleconnection in CMIP5 models. J. Climate, 27, 3643–3664.

    Article  Google Scholar 

  • Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014b: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 733–747, doi:10.1007/s00382-013-1841-6.

    Article  Google Scholar 

  • Lee, M.-H., C.-H. Ho, J. Kim, and C.-J. Song, 2012: Assessment of the changes in extreme vulnerability over East Asia due to global warming. Climatic Change, 113, 301–321, doi:10.1007/s10584-011-0345-9.

    Article  Google Scholar 

  • Leung, L. R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 1025–1043.

    Article  Google Scholar 

  • Li, H. M., T. J. Zhou, and J.-C. Nam, 2009: Comparison of daily extreme temperatures over eastern China and South Korea between 1996–2005. Adv. Atmos. Sci., 26, 253–264, doi:10.1007/s00376-009-0253-3.

    Article  Google Scholar 

  • Li, H. M., L. Feng, and T. J. Zhou, 2011: Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv. Atmos. Sci., 28, 448–463, doi:10.1007/s00376-010-0052-x.

    Article  Google Scholar 

  • Marinucci, M. R., F. Giorgi, M. Beniston, M. Wild, P. Tschuck, A. Ohmura, and A. Bernasconi, 1995: High resolution simulations of January and July climate over the western alpine region with a nested regional modeling system. Theor. Appl. Climatol., 51, 119–138.

    Article  Google Scholar 

  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997.

    Article  Google Scholar 

  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378–381.

    Article  Google Scholar 

  • Oh, H., and K.-J. Ha, 2014: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Clim. Dynam., doi:10.1007/s00382-014-2268-4.

    Google Scholar 

  • Seneviratne, S. I., M. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nature Clim. Change, 4, 161–163.

    Article  Google Scholar 

  • Seo, K.-H., J. Ok, and J.-H. Son, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662–7675.

    Article  Google Scholar 

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part I. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 1716–1733.

    Article  Google Scholar 

  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projection. J. Geophys. Res. Atmos., 118, 2473–2493, doi:10.1002/jgrd.50188.

    Article  Google Scholar 

  • Shukla, J., T. Delsole, M. Fennessy, J. Kinter, and D. Paolino, 2006: Climate model fidelity and projections of climate change. Geophys. Res. Lett., 33, L07702, doi:10.1029/2005GL025579.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim. Dynam., 42, 83–100.

    Article  Google Scholar 

  • Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571–583.

    Article  Google Scholar 

  • Xu, J. Y., Y. Shi, X. J. Gao, and F. Goirgi, 2013: Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chinese Sci. Bull., 58, 1443–1452.

    Article  Google Scholar 

  • Xu, Y., X. J. Gao, and F. Giorgi, 2010: Upgrades to the reliablility ensemble averaging method for producing probabilistic climate change projections. Clim., Res., 41, 61–81.

    Article  Google Scholar 

  • Yao, Y., Y. Luo, J. Huang, and Z. Zhao, 2013: Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models. J. Climate, 26, 7692–7707.

    Article  Google Scholar 

  • Yeh, S.-W., Y.-G. Ham, and J.-Y. Lee, 2012: Changes in the tropical pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 7764–7771.

    Article  Google Scholar 

  • Yu, E. T., H. J. Wang, and J. Q. Sun, 2010: A quick report on a dynamical downscaling simulation over China using nested model. Atmos. Oceanic Sci. Lett., 3, 325–329.

    Google Scholar 

  • Yun, K.-S., S.-H. Shin, K.-J. Ha, A. Kitoh, and S. Kusunoki, 2008: East Asian precipitation change in the global warming climate simulated by a 20-km mesh AGCM. Asia-Pac. J. Atmos. Sci., 44, 233–247.

    Google Scholar 

  • Yun, K.-S., K.-Y. Heo, J.-E. Chu, K.-J. Ha, E.-J. Lee, Y. Choi, and A. Kitoh, 2012: Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pac. J. Atmos. Sci., 48, 213–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ja Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, YW., Kim, H., Yun, KS. et al. Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pacific J Atmos Sci 50 (Suppl 1), 609–624 (2014). https://doi.org/10.1007/s13143-014-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0050-5

Key words