Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characteristics of observed tropopause height derived from L-band sounder over the Tibetan Plateau and surrounding areas

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The tropopause, which plays important roles in the stratosphere-troposphere exchange, is an interface between the troposphere and stratosphere. In this study, the characteristics of tropopause is investigated with the high vertical resolution daily sounding data during the period from 2008 to 2014 collected by the network of L-band sounder at 119 observational stations over Mainland China developed by the China Meteorological Administration (CMA). The results show that the tropopause height increases from the north to the south and has little correspondence with the station elevation. In addition, the spectral analyses and wavelet analyses are also performed to understand the intraseasonal variations of the tropopause. The results show that usually there are seasonal cycles with maximum in summer and minimum in winter. The strongest spectral band with period of 25-35 days is observed over the Southeast China. Besides, 20-60 days signals over the Changjiang River basin and the Tibetan Plateau has a good correlation to the Oceanic Niño Index (ONI), suggesting that the behavior of tropopause over the regions between 30oN and 40oN could relate to the Niño events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air-sea interaction at the onset of El Niño. J. Climate, 14, 1702–1719.

    Article  Google Scholar 

  • Chen, X. L., Y. M. Ma, H. Kelder, Z. Su, and K. Yang, 2011: On the behaviour of the tropopause folding events over the Tibetan Plateau. Atmos. Chem. Phys., 11, 5113–5122, doi:10.5194/acp-11-5113-2011.

    Article  Google Scholar 

  • Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, doi:10.1088/1748-9326/5/4/044005.

    Article  Google Scholar 

  • Feng, S., Y. Fu, and Q. Xiao, 2011: Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMOC) data. J. Geophys. Res., 116, D21121, doi:10.1029/2011JD016140.

    Article  Google Scholar 

  • Fu, R., Y. Hu, J. S. Wright, J. H. Jiang, R. E. Dickinson, M. Chen, M. Filipiak, W. G. Read, J. W. Waters, and D. L. Wu, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. the National Academy of Sciences of the United States of America, 103, 5664–5669.

    Article  Google Scholar 

  • Gage, K. S., and G. C. Reid, 1987: Longitudinal variations in tropical tropopause properties in relation to tropical convection and El Niño-Southern Oscillation events. J. Geophys. Res., 92, 14197–14203, doi:10.1029/JC092iC13p14197

    Article  Google Scholar 

  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, doi:10.1029/2004JD004878

    Google Scholar 

  • Gettelman, A., W. D. Collins, E. J. Fetzer, A. Eldering, F. W. Irion, P. B. Duffy, and G. Bala, 2006: Climatology of upper-tropospheric relative humidity from the atmospheric infrared sounder and implications for climate. J. Climate, 19, 6104–6121, doi:http://dx.doi.org/10.1175/JCLI3956.1.

    Article  Google Scholar 

  • Highwood, E. J., B. J. Hoskins, and P. Berrisford, 2000: Properties of the Arctic tropopause. Quart. J. Roy. Meteor. Soc., 126, 1515–1532, doi: 10.1002/qj.49712656515.

    Article  Google Scholar 

  • Hoinka, K. P., 1997: The tropopause: Discovery, definition and demarcation. Meteorol. Z., 6, 281–303.

    Google Scholar 

  • Hoinka, K. P., 1999: Temperature, humidity and wind at the global tropopause. Mon. Wea. Rev., 127, 2248–2265, doi:http://dx.doi.org/10.1175/1520-0493(1999)127<2248:THAWAT>2.0.CO;2

    Article  Google Scholar 

  • Holton, J. R., P. H. Haynes, M. E. Mclntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439, doi:10.1029/95RG02097

    Article  Google Scholar 

  • Homeyer, C. R., K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, 2011: Dynamical and chemical characteristics of tropospheric intrusions observed during START08. J. Geophys. Res., 116, doi: 10.1029/2010JD015098

  • Jensen, E. J., L. Pfister, R. Ueyama, J. W. Bergman, and D. Kinnison, 2015: Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause. J. Geophys. Res., 120, 2067–2086, doi:10.1002/2014JD022661.

    Article  Google Scholar 

  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 1961–1983, doi:10.1002/qj.49712757606.

    Google Scholar 

  • Klemp, J. B., and D. R. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339.

    Article  Google Scholar 

  • Kwon, E. H., B. J. Sohn, J. Schmetz, and P. Watts, 2010: Intercomparison of height assignment methods for opaque clouds over the tropics. Asia-Pac. J. Atmos. Sci., 46, 11–19, doi:10.1007/s13143-010-0002-7

    Article  Google Scholar 

  • Lakkis, S. G., and P. O. Canziani, 2009: A comparative analysis of the temperature behavior and multiple tropopause events derived from GPS, radiosonde and reanalysis datasets over Argentina, as an example of Southern mid latitude. Rev. Climatol. 9, 1–14.

    Google Scholar 

  • Li, C., Z. Long, and M. Mu, 2003: Atmospheric intraseasonal oscillation and its important effect. Chinese J. Atmos. Sci., 27, 518–535 (in Chinese).

    Google Scholar 

  • Liu, H., Z. Wei, H. Wei, Z. Li, and C. Wang, 2012: Characteristics of tropopause height over China in recent 51 years. Plateau Meteorol., 31, 351–358 (in Chinese with English abstract).

    Google Scholar 

  • Nash, J., R. Smout, T. Oakley, B. Pathack, and S. Kurnosenko, 2005: WMO intercomparison of high quality radiosonde systems. Vacaos, Mauritius, 118 pp.

    Google Scholar 

  • Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Clim. Dyn., 43, 753–770, doi:10.1007/s00382-013-1817-6.

    Article  Google Scholar 

  • Powell, A. M., and J. Xu, 2012: Assessment of the relationship between the combined solar cycle/ENSO forcings and the tropopause temperature. J. Atmos. Sol.-Terr. Phys., 80, 21–27, doi:10.1016/j.jastp.2012.02.023.

    Article  Google Scholar 

  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169–176, doi:10.1038/ngeo1733.

    Article  Google Scholar 

  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, doi:10.1029/2006jd007904.

    Google Scholar 

  • Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611–613, doi:10.1126/science.1182274.

    Article  Google Scholar 

  • Rimbu, N., S. Stefan, A. Busuioc, and F. Georgescu, 2015: Links between blocking circulation and precipitation extremes over Romania in summer. Int. J. Climatol., 36, 369–376, doi:10.1002/joc.4353.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2003a: Behavior of tropopause height and atmospheric temperature in models, reanalysis, and observations: Decadal changes. J. Geophys. Res., 108, D1, 4002, doi:10.1029/2002-JD002258

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2003b: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479–483, doi:10.1126/science.1084123.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2004: Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res., 109, D21104, doi: 10.1029/2004JD005075.

    Article  Google Scholar 

  • Sausen, R., B. Feneberg, and M. Ponater, 1997: Climatic impact of aircraft induced ozone changes. Geophys. Res. Lett., 24, 1203–1206.

    Article  Google Scholar 

  • Sausen, R., and B. D. Santer, 2003: Use of changes in tropopause height to detect human influence over climate. Meteorol. Z., 12, 131–136, doi:10.1127/0941-2948/2003/0012-0131.

    Article  Google Scholar 

  • Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, doi: 10.1029/2006JD007363.

  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, doi:10.1029/2007JD008861.

  • Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 1100–1111.

    Article  Google Scholar 

  • Siler, N., and D. Durran, 2015: Assessing the impact of the tropopause on mountain waves and orographic precipitation using linear theory and numerical simulations. J. Atmos. Sci., 72, 803–820, doi:10.1175/JAS-D-14-0200.1.

    Article  Google Scholar 

  • Škerlak, B., M. Sprenger, and S. Pfahl, 2015: Tropopause folds in ERAInterim: Global climatology and relation to extreme weather events. J. Geophys. Res., 120, 4860–4877, doi:10.1002/2014JD022787

    Google Scholar 

  • Son, S. W., N. F. Tandon, and L. M. Polvani, 2011: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, doi:10.1029/2011-JD016030.

    Article  Google Scholar 

  • Truong, N. M., V. T. Hang, R. A. Pielke Sr., C. L. Castro, and K. Dairaku, 2012: Synoptic-scale physical mechanisms associated with the Mei-yu front: A numerical case study in 1999. Asia-Pac. J. Atmos. Sci., 48, 433–448, doi:10.1007/s13143-012-0039-x.

    Article  Google Scholar 

  • Vernier, J.-P., L. W. Thomason, and J. Kar, 2011: CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett., 38, L07804, doi: 10.1029/2010GL046614.

    Article  Google Scholar 

  • Wang, S., and L. M. Polvani, 2011: Double tropopause formation in idealized baroclinic life cycles: The key role of an initial tropopause inversion layer. J. Geophys. Res., 116, doi:10.1029/2010jd015118

  • Wang, Y., L. Chen, J. He, and B. Zhang, 2009: Effect of summer heat source low-frequency oscillation over the Tibetan Plateau on precipitation in eastern China. J. Appl. Meteorol. Sci., 20, 419–427 (in Chinese with English abstract).

    Google Scholar 

  • WMO, 1957: Meteorology — A Three-Dimensional Science: Second Session of the Commission for Aerology. WMO Bulletin IV,WMO, Geneva, 134–138

    Google Scholar 

  • Yang, J., and D. Lü, 2004: Diagnosed seasonal variation of stratospheretroposphere exchange in the northern hemisphere by 2000 data. Chinese J. Atmos. Sci., 28, 294–300 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, R., T. Kuoke, X. Xu, Y. Ma, and K. Yang, 2012: A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overviews. J. Meteor. Soc. Japan., 90C, 1–16, doi:http://doi.org/10.2151/jmsj.2012-C01.

    Article  Google Scholar 

  • Zurita-Gotor, P., and G. K. Vallis, 2013: Determination of extratropical tropopause height in an idealized grey radiation model. J. Atmos. Sci., 70, 2272–2292, doi:http://dx.doi.org/10.1175/JAS-D-12-0209.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, D., Xu, J. et al. Characteristics of observed tropopause height derived from L-band sounder over the Tibetan Plateau and surrounding areas. Asia-Pacific J Atmos Sci 53, 1–10 (2017). https://doi.org/10.1007/s13143-016-0035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0035-7

Key words