Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A computational model to analyze the impact of birth weight-nutritional status pair on disease development and disease recovery

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this work is to analyse the combined impacts of birth weight and nutritional status on development and recovery of various types of diseases. This work aims to computationally establish the facts about the effects of individual birth weight-nutritional status pairs on disease development and disease recovery.

Methods

This work designs a computational model to analyze the impact of birth weight-nutritional status pairs on disease development and disease recovery. Our model works in two phases. The first phase finds the best machine learning model to predict birth weight from “Child Birth Weight Dataset” available at IEEE Dataport (https://dx.doi.org/10.21227/dvd4-3232). The second phase combines the predicted birth weight labels with nutritional status labels and establishes the effects using differential equations.

Results

The experimental results find Gradient boosting (GB) to work the best with Information gain (IGT) and Support Vector Machine (SVM) with Chi-square test (CST) for predicting the birth weights. The simulated results establish that “normal birth weight and normal nutritional status” is the best pair for resisting disease development as well as enhancing disease recovery. The results also depict that “low birth weight and malnutrition” is the worst pair for disease development while “high birth weight and malnutrition” is the worst combination for disease recovery.

Conclusion

The findings computationally establish the facts about the effects of birth weight-nutritional status pairs on disease development and disease recovery. As a social implication, this study can spread awareness about the importance of birth weight and nutritional status. The outcome can be helpful for the concerned authority in making decisions on healthcare cost and expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset used in this study is available at IEEE Dataport (https://dx.doi.org/10.21227/dvd4-3232)

Code availability

Self code. Available on request.

References

  1. Andriani H. Birth weight and childhood obesity: effect modification by residence and household wealth. Emerg Themes Epidemiol. 2021. https://doi.org/10.1186/s12982-021-00096-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ntenda PAM. Association of low birth weight with undernutrition in preschool-aged children in Malawi. Nutr J. 2019;18(1):51. https://doi.org/10.1186/s12937-019-0477-8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woldeamanuel GG, Geta TG, Mohammed TP, Shuba MB, Bafa TA. Effect of nutritional status of pregnant women on birth weight of newborns at Butajira Referral Hospital, Butajira, Ethiopia. SAGE Open Med. 2019;7:2050312119827096. https://doi.org/10.1177/2050312119827096.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med. 2020;18(1):135. https://doi.org/10.1186/s12916-020-01584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hussain Z, Borah MD. Nutritional status prediction in neonate using machine learning techniques: a comparative study. In: Bhattacharjee A, Borgohain SK, Soni B, Verma G, Gao X-Z, editors. Machine learning image processing network security and data sciences. Singapore: Springer; 2020. p. 69–83. https://doi.org/10.1007/978-981-15-6318-8_7.

    Chapter  Google Scholar 

  6. Garcia Rincon LJ, Alencar GP, Cardoso MA, Narvai PC, Frazão P. Effect of birth weight and nutritional status on transverse maxillary growth: implications for maternal and infant health. PLoS ONE. 2020;15(1):1–12. https://doi.org/10.1371/journal.pone.0228375.

    Article  CAS  Google Scholar 

  7. Aboagye RG, Ahinkorah BO, Seidu A-A, Frimpong JB, Archer AG, Adu C, Hagan JE Jr, Amu H, Yaya S. Birth weight and nutritional status of children under five in Sub-Saharan Africa. PLoS ONE. 2022;17(6):1–19. https://doi.org/10.1371/journal.pone.0269279.

    Article  CAS  Google Scholar 

  8. Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: a narrative review. Nutrients. 2020. https://doi.org/10.3390/nu12123900.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhowmik B, Siddique T, Majumder A, Mdala I, Hossain IA, Hassan Z, Jahan I, Moreira NCDV, Alim A, Basit A, Hitman GA, Khan AKA, Hussain A. Maternal BMJ and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth. 2019;19(1):413. https://doi.org/10.1186/s12884-019-2571-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Do HJ, Moon KM, Jin HS. Machine learning models for predicting mortality in 7472 very low birth weight infants using data from a nationwide neonatal network. Diagnostics. 2022. https://doi.org/10.3390/diagnostics12030625.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Islam Pollob SMA, Abedin MM, Islam MT, Islam MM, Maniruzzaman M. Predicting risks of low birth weight in Bangladesh with machine learning. PLoS ONE. 2022;17(5):1–12. https://doi.org/10.1371/journal.pone.0267190.

    Article  CAS  Google Scholar 

  12. Song IG, Kim H-S, Cho Y-M, Lim Y-N, Moon D-S, Shin SH, Kim E-K, Park J, Shin JE, Han J, Eun HS. Association between birth weight and neurodevelopmental disorders assessed using the Korean national health insurance service claims data. Sci Rep. 2022;12(1):2080. https://doi.org/10.1038/s41598-022-06094-x.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeng P, Zhou X. Causal association between birth weight and adult diseases: evidence from a mendelian randomization analysis. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00618.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma V, Sharma V, Khan A, Wassmer DJ, Schoenholtz MD, Hontecillas R, Bassaganya-Riera J, Zand R, Abedi V. Malnutrition, health and the role of machine learning in clinical setting. Front Nutr. 2020. https://doi.org/10.3389/fnut.2020.00044.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kirk D, Catal C, Tekinerdogan B. Precision nutrition: a systematic literature review. Comput Biol Med. 2021;133: 104365. https://doi.org/10.1016/j.compbiomed.2021.104365.

    Article  PubMed  Google Scholar 

  16. Raphaeli O, Singer P. Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools. Clin Nutr. 2021;40(10):5249–51. https://doi.org/10.1016/j.clnu.2021.08.013.

    Article  PubMed  Google Scholar 

  17. Hussain Z, Borah MD. Birth weight prediction of new born baby with application of machine learning techniques on features of mother. J Stat Manag Syst. 2020;23(6):1079–91. https://doi.org/10.1080/09720510.2020.1814499.

    Article  Google Scholar 

  18. Talukder A, Ahammed B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition. 2020;78: 110861. https://doi.org/10.1016/j.nut.2020.110861.

    Article  PubMed  Google Scholar 

  19. Khan W, Zaki N, Masud MM, Ahmad A, Ali L, Ali N, Ahmed LA. Infant birth weight estimation and low birth weight classification in united Arab emirates using machine learning algorithms. Sci Rep. 2022;12(1):12110. https://doi.org/10.1038/s41598-022-14393-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fenta HM, Zewotir T, Muluneh EK. A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones. BMC Med Inform Decis Mak. 2021;21(1):291. https://doi.org/10.1186/s12911-021-01652-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bekele WT. Machine learning algorithms for predicting low birth weight in Ethiopia. BMC Med Inform Decis Mak. 2022;22(1):232. https://doi.org/10.1186/s12911-022-01981-9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sousa CM, Santana E, Lopes MV, Lima G, Azoubel L, Carneiro E, Barros AK, Pires N. Development of a computational model to predict excess body fat in adolescents through low cost variables. Int J Environ Res Public Health. 2019. https://doi.org/10.3390/ijerph16162962.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei J, Fan L, Zhang Y, Li S, Partridge J, Claytor L, Sulo S. Association between malnutrition and depression among community-dwelling older Chinese adults. Asia Pac J Public Health. 2018;30(2):107–17. https://doi.org/10.1177/1010539518760632.

    Article  PubMed  Google Scholar 

  24. Sgkdddd B-GBSW. Association of birth weight with type 2 diabetes and glycemic traits: a mendelian randomization study. JAMA Netw Open. 2019;2(9):1910915–1910915. https://doi.org/10.1001/jamanetworkopen.2019.10915.

    Article  Google Scholar 

  25. Riad A, Knight SR, Ghosh D, Kingsley PA, Lapitan MC, Parreno-Sacdalan MDEA. Impact of malnutrition on early outcomes after cancer surgery: an international, multicentre, prospective cohort study. Lancet Global Health. 2023;11(3):341–9. https://doi.org/10.1016/S2214-109X(22)00550-2.

    Article  Google Scholar 

  26. Sousa-Catita D, Ferreira-Santos C, Mascarenhas P, Oliveira C, Madeira R, Santos CA, André C, Godinho C, Antunes L, Fonseca J. Malnutrition, cancer stage and gastrostomy timing as markers of poor outcomes in gastrostomy-fed head and neck cancer patients. Nutrients. 2023. https://doi.org/10.3390/nu15030662.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tchoumi SY, Njintang NY, Kamgang JC, Tchuenche JM. Malaria and malnutrition in children: a mathematical model. Franklin Open. 2023;3: 100013. https://doi.org/10.1016/j.fraope.2023.100013.

    Article  Google Scholar 

  28. Hussain Z, Borah MD. Nicov: a model to analyse impact of nutritional status and immunity on COVID-19. Med Biol Eng Comput. 2022;60(5):1481–96. https://doi.org/10.1007/s11517-022-02545-9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hussain Z, Borah MD. Predicting mental health and nutritional status from social media profile using deep learning. In: Hong T-P, Serrano-Estrada L, Saxena A, Biswas A, editors. Deep learning for social media data analytics. Cham: Springer; 2022. p. 177–93.

    Chapter  Google Scholar 

  30. Jana A, Dey D, Ghosh R. Contribution of low birth weight to childhood undernutrition in India: evidence from the national family health survey 2019–2021. BMC Public Health. 2023;23(1):1336. https://doi.org/10.1186/s12889-023-16160-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bianchi ME, Restrepo JM. Low birthweight as a risk factor for non-communicable diseases in adults. Front Med. 2022. https://doi.org/10.3389/fmed.2021.793990.

    Article  Google Scholar 

  32. Bernhardsen GP, Stensrud T, Hansen BH, Steene-Johannesen J, Kolle E, Nystad W, Anderssen SA, Hallal PC, Janz KF, Kriemler S, Andersen LB, Northstone K, Resaland GK, Sardinha LB, van Sluijs EMF, Ried-Larsen M, Ekelund U. Birth weight, cardiometabolic risk factors and effect modification of physical activity in children and adolescents: pooled data from 12 international studies. Int J Obes. 2020;44(10):2052–63. https://doi.org/10.1038/s41366-020-0612-9.

    Article  Google Scholar 

  33. Doorduijn AS, de van der Schueren MAE, van de Rest O, de Leeuw FA, Hendriksen HMA, Teunissen CE, Scheltens P, van der Flier WM, Visser M. Nutritional status is associated with clinical progression in alzheimer’s disease: the nudad project. J Am Med Direct Assoc. 2023;24(5):638–6441. https://doi.org/10.1016/j.jamda.2020.10.020.

  34. Schneider EB. The effect of nutritional status on historical infectious disease morbidity: evidence from the London foundling hospital, 1892–1919. Hist Fam. 2023;28(2):198–228. https://doi.org/10.1080/1081602X.2021.2007499.

    Article  Google Scholar 

  35. Borah MD, Hussain Z. Ein System zur Analyse der Auswirkungen des Geburtsgewichts Auf Krankheitsspezifische Folgen des Ernährungszustands. 202022101981.9, German Patent and Trade Mark Office 2022. https://register.dpma.de/DPMAregister/pat/register?AKZ=2020221019819

  36. Hussain Z, Borah MD. Child birth weight dataset IEEE Dataport. 2022. https://doi.org/10.21227/dvd4-3232.

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zakir Hussain; Methodology: Zakir Hussain; Formal analysis and investigation: Zakir Hussain; Writing - original draft preparation: Zakir Hussain; Writing - review and editing: Zakir Hussain, Malaya Dutta Borah; Supervision: Malaya Dutta Borah.

Corresponding author

Correspondence to Zakir Hussain.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Borah, M.D. A computational model to analyze the impact of birth weight-nutritional status pair on disease development and disease recovery. Health Inf Sci Syst 12, 10 (2024). https://doi.org/10.1007/s13755-024-00272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-024-00272-z

Keywords