Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Antibiotic therapy is one of the main treatments for cystic fibrosis (CF). It aims to eradicate bacteria during early infection, calms down the inflammatory process, and leads to symptom resolution of pulmonary exacerbations. CF can modify both the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of antibiotics, therefore specific PK/PD endpoints should be determined in the context of CF. Currently available data suggest that optimal PK/PD targets cannot be attained in sputum with intravenous aminoglycosides. Continuous infusion appears preferable for β-lactam antibiotics, but optimal concentrations in sputum are unlikely to be reached, with some possible exceptions such as meropenem and ceftolozane. Usual doses are likely suboptimal for fluoroquinolones and linezolid, whereas daily doses of 45–60 mg/kg and 200 mg could be convenient for vancomycin and doxycycline, respectively. Weekly azithromycin doses of 22–30 mg/kg could also be appropriate for its anti-inflammatory effect. The difficulty with achieving optimal concentrations supports the use of combined treatments and the inhaled administration route, as very high local concentrations, concomitantly with low systemic exposure, can be obtained with the inhaled route for aminoglycosides, colistin, and fluoroquinolones, thus minimizing the risk of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373:1891–904.

    Article  PubMed  Google Scholar 

  2. Brown RK, Wyatt H, Price JF, Kelly FJ. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J. 1996;9:334–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay CA, Bosso JA. Optimisation of antibiotic therapy in cystic fibrosis patients. Pharmacokinetic considerations. Clin Pharmacokinet. 1993;24:496–506.

    Article  CAS  PubMed  Google Scholar 

  4. Bolister N, Basker M, Hodges NA, Marriott C. The diffusion of beta-lactam antibiotics through mixed gels of cystic fibrosis-derived mucin and Pseudomonas aeruginosa alginate. J Antimicrob Chemother. 1991;27:285–93.

    Article  CAS  PubMed  Google Scholar 

  5. Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.

    Article  CAS  PubMed  Google Scholar 

  6. Mendelman PM, Smith AL, Levy J, Weber A, Ramsey B, Davis RL. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985;132:761–5.

    CAS  PubMed  Google Scholar 

  7. Stewart PS, White B, Boegli L, Hamerly T, Williamson KS, Franklin MJ, et al. Conceptual model of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology. J Bacteriol. 2019;201:1–24.

    Article  Google Scholar 

  8. Jensen PØ, Briales A, Brochmann RP, Wang H, Kragh KN, Kolpen M, et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog Dis. 2014;70:440–3.

    Article  CAS  PubMed  Google Scholar 

  9. Döring G, Gulbins E. Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol. 2009;11:208–16.

    Article  PubMed  Google Scholar 

  10. Brook I. Inoculum effect. Rev Infect Dis. 1989;11:361–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kuti JL. Optimizing antimicrobial pharmacodynamics: a guide for your stewardship program. Rev Méd Clín Las Condes. 2016;27:615–24.

    Google Scholar 

  12. Spino M, Chai RP, Isles AF, Thiessen JJ, Tesoro A, Gold R, et al. Cloxacillin absorption and disposition in cystic fibrosis. J Pediatr. 1984;105:829–35.

    Article  CAS  PubMed  Google Scholar 

  13. de Groot R, Hack BD, Weber A, Chaffin D, Ramsey B, Smith AL. Pharmacokinetics of ticarcillin in patients with cystic fibrosis: a controlled prospective study. Clin Pharmacol Ther. 1990;47:73–8.

    Article  PubMed  Google Scholar 

  14. Wang JP, Unadkat JD, Al-Habet SM, O’Sullivan TA, Williams-Warren J, Smith AL, et al. Disposition of drugs in cystic fibrosis. IV. Mechanisms for enhanced renal clearance of ticarcillin. Clin Pharmacol Ther. 1993;54:293–302.

    Article  CAS  PubMed  Google Scholar 

  15. Corvaia L, Li SC, Ioannides-Demos LL, Bowes G, Spicer WJ, Spelman DW, et al. A prospective study of the effects of oral probenecid on the pharmacokinetics of intravenous ticarcillin in patients with cystic fibrosis. J Antimicrob Chemother. 1992;30:875–8.

    Article  CAS  PubMed  Google Scholar 

  16. Guggenbichler JP, Schneeberger J. Antimicrobial chemotherapy in patients with cystic fibrosis. Infection. 1987;15:397–402.

    Article  CAS  PubMed  Google Scholar 

  17. Jacobs RF, Trang JM, Kearns GL, Warren RH, Brown AL, Underwood FL, et al. Ticarcillin/clavulanic acid pharmacokinetics in children and young adults with cystic fibrosis. J Pediatr. 1985;106:1001–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zobell JT, Stockmann C, Young DC, Cash J, McDowell BJ, Korgenski K, et al. Population pharmacokinetic and pharmacodynamic modeling of high-dose intermittent ticarcillin-clavulanate administration in pediatric cystic fibrosis patients. Clin Ther. 2011;33:1844–50.

    Article  CAS  PubMed  Google Scholar 

  19. Vinks AA, Den Hollander JG, Overbeek SE, Jelliffe RW, Mouton JW. Population pharmacokinetic analysis of nonlinear behavior of piperacillin during intermittent or continuous infusion in patients with cystic fibrosis. Antimicrob Agents Chemother. 2003;47:541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Butterfield JM, Lodise TP, Beegle S, Rosen J, Farkas J, Pai MP. Pharmacokinetics and pharmacodynamics of extended-infusion piperacillin/tazobactam in adult patients with cystic fibrosis-related acute pulmonary exacerbations. J Antimicrob Chemother. 2014;69:176–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bulitta JB, Duffull SB, Kinzig-Schippers M, Holzgrabe U, Stephan U, Drusano GL, et al. Systematic comparison of the population pharmacokinetics and pharmacodynamics of piperacillin in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2007;51:2497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel N, Scheetz MH, Drusano GL, Lodise TP. Identification of optimal renal dosage adjustments for traditional and extended-infusion piperacillin–tazobactam dosing regimens in hospitalized patients. Antimicrob Agents Chemother. 2010;54:460–5.

    Article  CAS  PubMed  Google Scholar 

  23. Felton TW, Hope WW, Lomaestro BM, Butterfield JM, Kwa AL, Drusano GL, et al. Population pharmacokinetics of extended-infusion piperacillin–tazobactam in hospitalized patients with nosocomial infections. Antimicrob Agents Chemother. 2012;56:4087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bulitta JB, Kinzig M, Jakob V, Holzgrabe U, Sörgel F, Holford NHG. Nonlinear pharmacokinetics of piperacillin in healthy volunteers—implications for optimal dosage regimens. Br J Clin Pharmacol. 2010;70:682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Öbrink-Hansen K, Jensen-Fangel S, Brock B, Hardlei TF, Adelfred A, Nejatbakhsh Y, et al. Piperacillin/tazobactam continuous infusion at 12G/1.5G per day in CF patients results in target plasma-concentrations. J Cyst Fibros. 2016;15:e13–4.

    Article  PubMed  Google Scholar 

  26. Reed MD, Stern RC, Myers CM, Klinger JD, Yamashita TS, Blumer JL. Therapeutic evaluation of piperacillin for acute pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol. 1987;3:101–9.

    Article  CAS  PubMed  Google Scholar 

  27. McCarty JM, Tilden SJ, Black P, Craft JC, Blumer J, Waring W, et al. Comparison of piperacillin alone versus piperacillin plus tobramycin for treatment of respiratory infections in children with cystic fibrosis. Pediatr Pulmonol. 1988;4:201–4.

    Article  CAS  PubMed  Google Scholar 

  28. Mouton JW, Punt N, Vinks AA. A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. Clin Ther. 2005;27:762–72.

    Article  CAS  PubMed  Google Scholar 

  29. Bulitta JB, Landersdorfer CB, Hüttner SJ, Drusano GL, Kinzig M, Holzgrabe U, et al. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2010;54:1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vinks AA, Touw DJ, Heijerman HG, Danhof M, de Leede GP, Bakker W. Pharmacokinetics of ceftazidime in adult cystic fibrosis patients during continuous infusion and ambulatory treatment at home. Ther Drug Monit. 1994;16:341–8.

    Article  CAS  PubMed  Google Scholar 

  31. Vinks AA, Brimicombe RW, Heijerman HG, Bakker W. Continuous infusion of ceftazidime in cystic fibrosis patients during home treatment: clinical outcome, microbiology and pharmacokinetics. J Antimicrob Chemother. 1997;40:125–33.

    Article  CAS  PubMed  Google Scholar 

  32. Hedman A, Adan-Abdi Y, Alvan G, Strandvik B, Arvidsson A. Influence of the glomerular filtration rate on renal clearance of ceftazidime in cystic fibrosis. Clin Pharmacokinet. 1988;15:57–65.

    Article  CAS  PubMed  Google Scholar 

  33. Vinks AA, Mouton JW, Touw DJ, Heijerman HG, Danhof M, Bakker W. Population pharmacokinetics of ceftazidime in cystic fibrosis patients analyzed by using a nonparametric algorithm and optimal sampling strategy. Antimicrob Agents Chemother. 1996;40:1091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leeder JS, Spino M, Isles AF, Tesoro AM, Gold R, MacLeod SM. Ceftazidime disposition in acute and stable cystic fibrosis. Clin Pharmacol Ther. 1984;36:355–62.

    Article  CAS  PubMed  Google Scholar 

  35. Kercsmar CM, Stern RC, Reed MD, Myers CM, Murdell D, Blumer JL. Ceftazidime in cystic fibrosis: pharmacokinetics and therapeutic response. J Antimicrob Chemother. 1983;12(Suppl A):289–95.

    Article  PubMed  Google Scholar 

  36. Assael BM, Boccazzi A, Caccamo ML, Giunta A, Marini A, Padoan R, et al. Clinical pharmacology of ceftazidime in paediatrics. J Antimicrob Chemother. 1983;12(Suppl A):341–6.

    Article  PubMed  Google Scholar 

  37. Padoan R, Brienza A, Crossignani RM, Lodi G, Giunta A, Assael BM, et al. Ceftazidime in treatment of acute pulmonary exacerbations in patients with cystic fibrosis. J Pediatr. 1983;103:320–4.

    Article  CAS  PubMed  Google Scholar 

  38. Turner A, Pedler SJ, Carswell F, Spencer GR, Speller DC. Serum and sputum concentrations of ceftazidime in patients with cystic fibrosis. J Antimicrob Chemother. 1984;14:521–7.

    Article  CAS  PubMed  Google Scholar 

  39. Martini N, Agostini M, Barlocco G, Bozzini L, Castellani L, Messori A, et al. Serum and sputum concentrations of azlocillin, cefoperazone and ceftazidime in patients with cystic fibrosis. J Clin Hosp Pharm. 1984;9:303–9.

    CAS  PubMed  Google Scholar 

  40. Moriarty TF, McElnay JC, Elborn JS, Tunney MM. Sputum antibiotic concentrations: implications for treatment of cystic fibrosis lung infection. Pediatr Pulmonol. 2007;42:1008–17.

    Article  CAS  PubMed  Google Scholar 

  41. Byl B, Baran D, Jacobs F, Herschuelz A, Thys JP. Serum pharmacokinetics and sputum penetration of amikacin 30 mg/kg once daily and of ceftazidime 200 mg/kg/day as a continuous infusion in cystic fibrosis patients. J Antimicrob Chemother. 2001;48:325–7.

    Article  CAS  PubMed  Google Scholar 

  42. Strandvik B, Malmborg AS, Alfredson H, Ericsson A. Clinical results and pharmacokinetics of ceftazidime treatment in patients with cystic fibrosis. J Antimicrob Chemother. 1983;12(Suppl A):283–7.

    Article  PubMed  Google Scholar 

  43. Munzenberger PJ, Hsu JM, Holliday SJ. Relationship of ceftazidime pharmacokinetic indices with therapeutic outcome in patients with cystic fibrosis. Pediatr Infect Dis J. 1993;12:997–1001.

    Article  CAS  PubMed  Google Scholar 

  44. Bosso JA, Bonapace CR, Flume PA, White RL. A pilot study of the efficacy of constant-infusion ceftazidime in the treatment of endobronchial infections in adults with cystic fibrosis. Pharmacotherapy. 1999;19:620–6.

    Article  CAS  PubMed  Google Scholar 

  45. Manduru M, Mihm LB, White RL, Friedrich LV, Flume PA, Bosso JA. In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 1997;41:2053–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rappaz I, Decosterd LA, Bille J, Pilet M, Bélaz N, Roulet M. Continuous infusion of ceftazidime with a portable pump is as effective as thrice-a-day bolus in cystic fibrosis children. Eur J Pediatr. 2000;159:919–25.

    Article  CAS  PubMed  Google Scholar 

  47. Hubert D, Le Roux E, Lavrut T, Wallaert B, Scheid P, Manach D, et al. Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob Agents Chemother. 2009;53:3650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prescott WA, Gentile AE, Nagel JL, Pettit RS. Continuous-infusion antipseudomonal Beta-lactam therapy in patients with cystic fibrosis. P T Peer-Rev J Formul Manag. 2011;36:723–63.

    Google Scholar 

  49. Thompson RZ, Martin CA, Burgess DR, Rutter WC, Burgess DS. Optimizing beta-lactam pharmacodynamics against Pseudomonas aeruginosa in adult cystic fibrosis patients. J Cyst Fibros. 2016;15:660–3.

    Article  CAS  PubMed  Google Scholar 

  50. Bensman TJ, Wang J, Jayne J, Fukushima L, Rao AP, D’Argenio DZ, et al. Pharmacokinetic–pharmacodynamic target attainment analyses to determine optimal dosing of ceftazidime–avibactam for the treatment of acute pulmonary exacerbations in patients with cystic fibrosis. Antimicrob Agents Chemother. 2017;61.

  51. Hamelin BA, Moore N, Knupp CA, Ruel M, Vallée F, LeBel M. Cefepime pharmacokinetics in cystic fibrosis. Pharmacotherapy. 1993;13:465–70.

    CAS  PubMed  Google Scholar 

  52. Huls CE, Prince RA, Seilheimer DK, Bosso JA. Pharmacokinetics of cefepime in cystic fibrosis patients. Antimicrob Agents Chemother. 1993;37:1414–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han EE, Beringer PM, Falck P, Louie S, Rao P, Shapiro B, et al. Pilot study of continuous infusion cefepime in adult patients with cystic fibrosis. J Antimicrob Chemother. 2006;57:1017–9.

    Article  CAS  PubMed  Google Scholar 

  54. Arguedas AG, Stutman HR, Zaleska M, Knupp CA, Marks MI, Nussbaum E. Cefepime. Pharmacokinetics and clinical response in patients with cystic fibrosis. Am J Dis Child 1960. 1992;146:797–802.

    Article  CAS  Google Scholar 

  55. Monogue ML, Pettit RS, Muhlebach M, Cies JJ, Nicolau DP, Kuti JL. Population pharmacokinetics and safety of ceftolozane-tazobactam in adult cystic fibrosis patients admitted with acute pulmonary exacerbation. Antimicrob Agents Chemother. 2016;60:6578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Autry EB, Rybak JM, Leung NR, Gardner BM, Burgess DR, Anstead MI, et al. Pharmacokinetic and pharmacodynamic analyses of ceftaroline in adults with cystic fibrosis. Pharmacotherapy. 2016;36:13–8.

    Article  CAS  PubMed  Google Scholar 

  57. Le J, Bradley JS, Hingtgen S, Skochko S, Black N, Jones RN, et al. Pharmacokinetics of single-dose ceftaroline fosamil in children with cystic fibrosis. Pediatr Pulmonol. 2017;52:1424–34.

    Article  PubMed  Google Scholar 

  58. Barsky EE, Pereira LM, Sullivan KJ, Wong A, McAdam AJ, Sawicki GS, et al. Ceftaroline pharmacokinetics and pharmacodynamics in patients with cystic fibrosis. J Cyst Fibros. 2018;17:e25-31.

    Article  CAS  PubMed  Google Scholar 

  59. Christensson BA, Ljungberg B, Eriksson L, Nilsson-Ehle I. Pharmacokinetics of meropenem in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 1998;17:873–6.

    Article  CAS  PubMed  Google Scholar 

  60. Bui KQ, Ambrose PG, Nicolau DP, Lapin CD, Nightingale CH, Quintiliani R. Pharmacokinetics of high-dose meropenem in adult cystic fibrosis patients. Chemotherapy. 2001;47:153–6.

    Article  CAS  PubMed  Google Scholar 

  61. Kuti JL, Nightingale CH, Knauft RF, Nicolau DP. Pharmacokinetic properties and stability of continuous-infusion meropenem in adults with cystic fibrosis. Clin Ther. 2004;26:493–501.

    Article  CAS  PubMed  Google Scholar 

  62. Delfino E, Fucile C, Del Bono V, Marchese A, Marini V, Coppo E, et al. Pharmacokinetics of high-dose extended-infusion meropenem during pulmonary exacerbation in adult cystic fibrosis patients: a case series. New Microbiol. 2018;41:47–51.

    CAS  PubMed  Google Scholar 

  63. Pettit RS, Neu N, Cies JJ, Lapin C, Muhlebach MS, Novak KJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71:189–95.

    Article  CAS  PubMed  Google Scholar 

  64. Kuti JL, Pettit RS, Neu N, Cies JJ, Lapin C, Muhlebach MS, et al. Meropenem time above the MIC exposure is predictive of response in cystic fibrosis children with acute pulmonary exacerbations. Diagn Microbiol Infect Dis. 2018;91:294–7.

    Article  CAS  PubMed  Google Scholar 

  65. Reed MD, Stern RC, O’Brien CA, Yamashita TS, Myers CM, Blumer JL. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrob Agents Chemother. 1985;27:583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bergan T, Michalsen H, Malmborg AS, Pedersen SS, Pressler T, Storrøsten OT, et al. Pharmacokinetic evaluation of imipenem combined with cilastatin in cystic fibrosis. Chemotherapy. 1993;39:369–73.

    Article  CAS  PubMed  Google Scholar 

  67. Strandvik B, Malmborg AS, Bergan T, Michalsen H, Storrøsten OT, Wretlind B. Imipenem/cilastatin, an alternative treatment of pseudomonas infection in cystic fibrosis. J Antimicrob Chemother. 1988;21:471–80.

    Article  CAS  PubMed  Google Scholar 

  68. Pedersen SS, Pressler T, Høiby N, Bentzon MW, Koch C. Imipenem/cilastatin treatment of multiresistant Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother. 1985;16:629–35.

    Article  CAS  PubMed  Google Scholar 

  69. Pedersen SS, Pressler T, Jensen T, Rosdahl VT, Bentzon MW, Høiby N, et al. Combined imipenem/cilastatin and tobramycin therapy of multiresistant Pseudomonas aeruginosa in cystic fibrosis. J Antimicrob Chemother. 1987;19:101–7.

    Article  CAS  PubMed  Google Scholar 

  70. Vinks AA, van Rossem RN, Mathôt RAA, Heijerman HGM, Mouton JW. Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using Monte Carlo simulation. Antimicrob Agents Chemother. 2007;51:3049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reed MD, Aronoff SC, Stern RC, Yamashita TS, Myers CM, Friedhoff LT, et al. Single-dose pharmacokinetics of aztreonam in children with cystic fibrosis. Pediatr Pulmonol. 1986;2:282–6.

    Article  CAS  PubMed  Google Scholar 

  72. Bosso JA, Black PG, Matsen JM. Ciprofloxacin versus tobramycin plus azlocillin in pulmonary exacerbations in adult patients with cystic fibrosis. Am J Med. 1987;82:180–4.

    CAS  PubMed  Google Scholar 

  73. Bosso JA, Black PG. Controlled trial of aztreonam vs. tobramycin and azlocillin for acute pulmonary exacerbations of cystic fibrosis. Pediatr Infect Dis J. 1988;7:171–6.

    Article  CAS  PubMed  Google Scholar 

  74. Schaad UB, Wedgwood-Krucko J, Guenin K, Buehlmann U, Kraemer R. Antipseudomonal therapy in cystic fibrosis: aztreonam and amikacin versus ceftazidime and amikacin administered intravenously followed by oral ciprofloxacin. Eur J Clin Microbiol Infect Dis. 1989;8:858–65.

    Article  CAS  PubMed  Google Scholar 

  75. Döring G, Flume P, Heijerman H, Elborn JS, Consensus Study Group. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11:461–79.

    Article  PubMed  Google Scholar 

  76. Hahn A, Jensen C, Fanous H, Chaney H, Sami I, Perez GF, et al. Relationship of pulmonary outcomes, microbiology, and serum antibiotic concentrations in cystic fibrosis patients. J Pediatr Pharmacol Ther. 2018;23:379–89.

    PubMed  PubMed Central  Google Scholar 

  77. Hengzhuang W, Ciofu O, Yang L, Wu H, Song Z, Oliver A, et al. High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57:196–204.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cantón R, Morosini M-I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011;35:977–91.

    Article  PubMed  Google Scholar 

  79. MacGowan A, Bowker K. Developments in PK/PD: optimising efficacy and prevention of resistance. A critical review of PK/PD in in vitro models. Int J Antimicrob Agents. 2002;19:291–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hahn A, Fanous H, Jensen C, Chaney H, Sami I, Perez GF, et al. Changes in microbiome diversity following beta-lactam antibiotic treatment are associated with therapeutic versus subtherapeutic antibiotic exposure in cystic fibrosis. Sci Rep. 2019;9:2534.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grenier B, Autret E, Marchand S, Thompson R. Kinetic parameters of amikacin in cystic fibrosis children. Infection. 1987;15:295–9.

    Article  CAS  PubMed  Google Scholar 

  82. Autret E, Marchand S, Breteau M, Grenier B. Pharmacokinetics of amikacin in cystic fibrosis: a study of bronchial diffusion. Eur J Clin Pharmacol. 1986;31:79–83.

    Article  CAS  PubMed  Google Scholar 

  83. Hong LT, Liou TG, Deka R, King JB, Stevens V, Young DC. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154:1108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vic P, Ategbo S, Turck D, Husson MO, Tassin E, Loeuille GA, et al. Tolerance, pharmacokinetics and efficacy of once daily amikacin for treatment of Pseudomonas aeruginosa pulmonary exacerbations in cystic fibrosis patients. Eur J Pediatr. 1996;155:948–53.

    Article  CAS  PubMed  Google Scholar 

  85. Canis F, Husson MO, Turck D, Vic P, Launay V, Ategbo S, et al. Pharmacokinetics and bronchial diffusion of single daily dose amikacin in cystic fibrosis patients. J Antimicrob Chemother. 1997;39:431–3.

    Article  CAS  PubMed  Google Scholar 

  86. Kearns GL, Hilman BC, Wilson JT. Dosing implications of altered gentamicin disposition in patients with cystic fibrosis. J Pediatr. 1982;100:312–8.

    Article  CAS  PubMed  Google Scholar 

  87. Alghanem S, Paterson I, Touw DJ, Thomson AH. Influence of multiple courses of therapy on aminoglycoside clearance in adult patients with cystic fibrosis. J Antimicrob Chemother. 2013;68:1338–47.

    Article  CAS  PubMed  Google Scholar 

  88. Crowther Labiris NR, Holbrook AM, Chrystyn H, Macleod SM, Newhouse MT. Dry powder versus intravenous and nebulized gentamicin in cystic fibrosis and bronchiectasis. A pilot study. Am J Respir Crit Care Med. 1999;160:1711–6.

    Article  CAS  PubMed  Google Scholar 

  89. Bauer LA, Piecoro JJ, Wilson HD, Blouin RA. Gentamicin and tobramycin pharmacokinetics in patients with cystic fibrosis. Clin Pharm. 1983;2:262–4.

    CAS  PubMed  Google Scholar 

  90. Mann HJ, Canafax DM, Cipolle RJ, Daniels CE, Zaske DE, Warwick WJ. Increased dosage requirements of tobramycin and gentamicin for treating Pseudomonas pneumonia in patients with cystic fibrosis. Pediatr Pulmonol. 1985;1:238–43.

    Article  CAS  PubMed  Google Scholar 

  91. Hendeles L, Iafrate RP, Stillwell PC, Mangos JA. Individualizing gentamicin dosage in patients with cystic fibrosis: limitations to pharmacokinetic approach. J Pediatr. 1987;110:303–10.

    Article  CAS  PubMed  Google Scholar 

  92. MacDonald NE, Anas NG, Peterson RG, Schwartz RH, Brooks JG, Powell KR. Renal clearance of gentamicin in cystic fibrosis. J Pediatr. 1983;103:985–90.

    Article  CAS  PubMed  Google Scholar 

  93. Young DC, Zobell JT, Stockmann C, Waters CD, Ampofo K, Sherwin CMT, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: V. Aminoglycosides. Pediatr Pulmonol. 2013;48:1047–61.

    Article  PubMed  Google Scholar 

  94. Mulheran M, Degg C, Burr S, Morgan DW, Stableforth DE. Occurrence and risk of cochleotoxicity in cystic fibrosis patients receiving repeated high-dose aminoglycoside therapy. Antimicrob Agents Chemother. 2001;45:2502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Maarseveen E, van Buul-Gast M-C, Abdoellakhan R, Gelinck L, Neef C, Touw D. Once-daily dosed gentamicin is more nephrotoxic than once-daily dosed tobramycin in clinically infected patients. J Antimicrob Chemother. 2014;69:2581–3.

    Article  PubMed  Google Scholar 

  96. Hennig S, Standing JF, Staatz CE, Thomson AH. Population pharmacokinetics of tobramycin in patients with and without cystic fibrosis. Clin Pharmacokinet. 2013;52:289–301.

    Article  CAS  PubMed  Google Scholar 

  97. Touw DJ, Vinks AA, Neef C. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm. Pharm World Sci PWS. 1997;19:142–51.

    Article  CAS  PubMed  Google Scholar 

  98. Lam W, Tjon J, Seto W, Dekker A, Wong C, Atenafu E, et al. Pharmacokinetic modelling of a once-daily dosing regimen for intravenous tobramycin in paediatric cystic fibrosis patients. J Antimicrob Chemother. 2007;59:1135–40.

    Article  CAS  PubMed  Google Scholar 

  99. Touw DJ, Knox AJ, Smyth A. Population pharmacokinetics of tobramycin administered thrice daily and once daily in children and adults with cystic fibrosis. J Cyst Fibros. 2007;6:327–33.

    Article  CAS  PubMed  Google Scholar 

  100. Horrevorts AM, Degener JE, Dzoljic-Danilovic G, Michel MF, Kerrebijn KF, Driessen O, et al. Pharmacokinetics of tobramycin in patients with cystic fibrosis. Implications for the dosing interval. Chest. 1985;88:260–4.

    Article  CAS  PubMed  Google Scholar 

  101. Arends A, Pettit R. Safety of extended interval tobramycin in cystic fibrosis patients less an 6 years old. J Pediatr Pharmacol Ther. 2018;23:152–8.

    PubMed  PubMed Central  Google Scholar 

  102. Aminimanizani A, Beringer PM, Kang J, Tsang L, Jelliffe RW, Shapiro BJ. Distribution and elimination of tobramycin administered in single or multiple daily doses in adult patients with cystic fibrosis. J Antimicrob Chemother. 2002;50:553–9.

    Article  CAS  PubMed  Google Scholar 

  103. Guglielmo BJ, Quan LA, Stulbarg MS. Pharmacokinetics of once-daily versus thrice daily tobramycin in cystic fibrosis patients. J Antimicrob Chemother. 1996;37:1040–2.

    Article  CAS  PubMed  Google Scholar 

  104. Vic P, Ategbo S, Turck D, Husson MO, Launay V, Loeuille GA, et al. Efficacy, tolerance, and pharmacokinetics of once daily tobramycin for pseudomonas exacerbations in cystic fibrosis. Arch Dis Child. 1998;78:536–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Prayle AP, Jain K, Touw DJ, Koch BCP, Knox AJ, Watson A, et al. The pharmacokinetics and toxicity of morning vs evening tobramycin dosing for pulmonary exacerbations of cystic fibrosis: a randomised comparison. J Cyst Fibros. 2016;15:510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Walsh KA, Davis GA, Hayes D, Kuhn RJ, Weant KA, Flynn JD. Tobramycin pharmacokinetics in patients with cystic fibrosis before and after bilateral lung transplantation. Transpl Infect Dis. 2011;13:616–21.

    Article  CAS  PubMed  Google Scholar 

  107. Dupuis RE, Sredzienski ES. Tobramycin pharmacokinetics in patients with cystic fibrosis preceding and following lung transplantation. Ther Drug Monit. 1999;21:161–5.

    Article  CAS  PubMed  Google Scholar 

  108. Zobell JT, Epps K, Kittell F, Sema C, McDade EJ, Peters SJ, et al. Tobramycin and beta-lactam antibiotic use in cystic fibrosis exacerbations: a pharmacist approach. J Pediatr Pharmacol Ther. 2016;21:239–46.

    PubMed  PubMed Central  Google Scholar 

  109. Bates RD, Nahata MC, Jones JW, McCoy K, Young G, Cox S, et al. Pharmacokinetics and safety of tobramycin after once-daily administration in patients with cystic fibrosis. Chest. 1997;112:1208–13.

    Article  CAS  PubMed  Google Scholar 

  110. Smyth A, Tan KH-V, Hyman-Taylor P, Mulheran M, Lewis S, Stableforth D, et al. Once versus three-times daily regimens of tobramycin treatment for pulmonary exacerbations of cystic fibrosis—the TOPIC study: a randomised controlled trial. Lancet. 2005;365:573–8.

    Article  CAS  PubMed  Google Scholar 

  111. Brigg Turner R, Elbarbry F, Biondo L. Pharmacokinetics of once and twice daily dosing of intravenous tobramycin in paediatric patients with cystic fibrosis. J Chemother Florence Italy. 2016;28:304–7.

    Article  CAS  Google Scholar 

  112. Sherwin CMT, Zobell JT, Stockmann C, McCrory BE, Wisdom M, Young DC, et al. Pharmacokinetic and pharmacodynamic optimisation of intravenous tobramycin dosing among children with cystic fibrosis. J Pharmacokinet Pharmacodyn. 2014;41:71–9.

    Article  CAS  PubMed  Google Scholar 

  113. Beringer PM, Vinks AA, Jelliffe RW, Shapiro BJ. Pharmacokinetics of tobramycin in adults with cystic fibrosis: implications for once-daily administration. Antimicrob Agents Chemother. 2000;44:809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alghanem SS, Touw DJ, Thomson AH. Pharmacokinetic/pharmacodynamic analysis of weight- and height-scaled tobramycin dosage regimens for patients with cystic fibrosis. J Antimicrob Chemother. 2019;74:2311–7.

    Article  CAS  PubMed  Google Scholar 

  115. Campbell D, Thomson AH, Stack B. Population pharmacokinetics of aminoglycoside antibiotics in patients with cystic fibrosis. Ther Drug Monit. 1999;21:281–8.

    Article  CAS  PubMed  Google Scholar 

  116. Whitehead A, Conway SP, Etherington C, Caldwell NA, Setchfield N, Bogle S. Once-daily tobramycin in the treatment of adult patients with cystic fibrosis. Eur Respir J. 2002;19:303–9.

    Article  CAS  PubMed  Google Scholar 

  117. Burkhardt O, Lehmann C, Madabushi R, Kumar V, Derendorf H, Welte T. Once-daily tobramycin in cystic fibrosis: better for clinical outcome than thrice-daily tobramycin but more resistance development? J Antimicrob Chemother. 2006;58:822–9.

    Article  CAS  PubMed  Google Scholar 

  118. Butterfield JM, Lodise TP, Beegle S, Rosen J, Farkas J, Pai MP. Pharmacokinetics and pharmacodynamics of once-daily administration of intravenous tobramycin in adult patients with cystic fibrosis hospitalized for an acute pulmonary exacerbation. Antimicrob Agents Chemother. 2013;57:5175–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mouton JW, Jacobs N, Tiddens H, Horrevorts AM. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis. 2005;52:123–7.

    Article  CAS  PubMed  Google Scholar 

  120. Gibson RL, Retsch-Bogart GZ, Oermann C, Milla C, Pilewski J, Daines C, et al. Microbiology, safety, and pharmacokinetics of aztreonam lysinate for inhalation in patients with cystic fibrosis. Pediatr Pulmonol. 2006;41:656–65.

    Article  PubMed  Google Scholar 

  121. Nichols DP, Happoldt CL, Bratcher PE, Caceres SM, Chmiel JF, Malcolm KC, et al. Impact of azithromycin on the clinical and antimicrobial effectiveness of tobramycin in the treatment of cystic fibrosis. J Cyst Fibros. 2017;16:358–66.

    Article  CAS  PubMed  Google Scholar 

  122. Klingel M, Stanojevic S, Tullis E, Ratjen F, Waters V. Oral azithromycin and response to pulmonary exacerbations treated with intravenous tobramycin in children with cystic fibrosis. Ann Am Thorac Soc. 2019;16:861–7.

    Article  PubMed  Google Scholar 

  123. Somayaji R, Russell R, Cogen JD, Goss CH, Nick SE, Saavedra MT, et al. Oral azithromycin use and the recovery of lung function from pulmonary exacerbations treated with intravenous tobramycin or colistimethate in adults with cystic fibrosis. Ann Am Thorac Soc. 2019;16:853–60.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Nichols DP, Odem-Davis K, Cogen JD, Goss CH, Ren CL, Skalland M, et al. Pulmonary outcomes associated with long-term azithromycin therapy in cystic fibrosis. Am J Respir Crit Care Med. 2020;201:430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bartel K, Habash T, Lugauer S, Bärmeier H, Böwing B, Unsal M, et al. Optimal tobramycin dosage in patients with cystic fibrosis—evidence for predictability based on previous drug monitoring. Infection. 1999;27:268–71.

    Article  CAS  PubMed  Google Scholar 

  126. Bloomfield C, Staatz CE, Unwin S, Hennig S. Assessing predictive performance of published population pharmacokinetic models of intravenous tobramycin in pediatric patients. Antimicrob Agents Chemother. 2016;60:3407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barras MA, Serisier D, Hennig S, Jess K, Norris RLG. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:6698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Coulthard KP, Peckham DG, Conway SP, Smith CA, Bell J, Turnidge J. Therapeutic drug monitoring of once daily tobramycin in cystic fibrosis–caution with trough concentrations. J Cyst Fibros. 2007;6:125–30.

    Article  CAS  PubMed  Google Scholar 

  129. Hennig S, Holthouse F, Staatz CE. Comparing dosage adjustment methods for once-daily tobramycin in paediatric and adolescent patients with cystic fibrosis. Clin Pharmacokinet. 2015;54:409–21.

    Article  CAS  PubMed  Google Scholar 

  130. Staubes BA, Metzger NL, Walker SD, Peasah SK. Evaluation of a once/day tobramycin regimen to achieve target concentrations in adult patients with cystic fibrosis. Pharmacotherapy. 2016;36:623–30.

    Article  CAS  PubMed  Google Scholar 

  131. Mulheran M, Hyman-Taylor P, Tan KH-V, Lewis S, Stableforth D, Knox A, et al. Absence of cochleotoxicity measured by standard and high-frequency pure tone audiometry in a trial of once- versus three-times-daily tobramycin in cystic fibrosis patients. Antimicrob Agents Chemother. 2006;50:2293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Scheenstra RJ, Heijerman HGM, Zuur CL, Touw DJ, Rijntjes E. No hearing loss after repeated courses of tobramycin in cystic fibrosis patients. Acta Otolaryngol (Stockh). 2010;130:253–8.

    Article  CAS  Google Scholar 

  133. Al-Malky G, Suri R, Dawson SJ, Sirimanna T, Kemp D. Aminoglycoside antibiotics cochleotoxicity in paediatric cystic fibrosis (CF) patients: a study using extended high-frequency audiometry and distortion product otoacoustic emissions. Int J Audiol. 2011;50:112–22.

    Article  PubMed  Google Scholar 

  134. Al-Malky G, Dawson SJ, Sirimanna T, Bagkeris E, Suri R. High-frequency audiometry reveals high prevalence of aminoglycoside ototoxicity in children with cystic fibrosis. J Cyst Fibros. 2015;14:248–54.

    Article  CAS  PubMed  Google Scholar 

  135. Tod M, Padoin C, Petitjean O. Individualising aminoglycoside dosage regimens after therapeutic drug monitoring: simple or complex pharmacokinetic methods? Clin Pharmacokinet. 2001;40:803–14.

    Article  CAS  PubMed  Google Scholar 

  136. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 10.0. 2020. https://www.eucast.org/clinical_breakpoints/. Accessed 02 Jul 2020.

  137. Smyth AR, Bhatt J. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2010;3(3):CD002009.

  138. Bender SW, Dalhoff A, Shah PM, Strehl R, Posselt HG. Ciprofloxacin pharmacokinetics in patients with cystic fibrosis. Infection. 1986;14:17–21.

    Article  CAS  PubMed  Google Scholar 

  139. Reed MD, Stern RC, Myers CM, Yamashita TS, Blumer JL. Lack of unique ciprofloxacin pharmacokinetic characteristics in patients with cystic fibrosis. J Clin Pharmacol. 1988;28:691–9.

    Article  CAS  PubMed  Google Scholar 

  140. Christensson BA, Nilsson-Ehle I, Ljungberg B, Lindblad A, Malmborg AS, Hjelte L, et al. Increased oral bioavailability of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1992;36:2512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. LeBel M, Bergeron MG, Vallée F, Fiset C, Chassé G, Bigonesse P, et al. Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrob Agents Chemother. 1986;30:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Davis RL, Koup JR, Williams-Warren J, Weber A, Heggen L, Stempel D, et al. Pharmacokinetics of ciprofloxacin in cystic fibrosis. Antimicrob Agents Chemother. 1987;31:915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Montgomery MJ, Beringer PM, Aminimanizani A, Louie SG, Shapiro BJ, Jelliffe R, et al. Population pharmacokinetics and use of Monte Carlo simulation to evaluate currently recommended dosing regimens of ciprofloxacin in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2001;45:3468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Steen HJ, Scott EM, Stevenson MI, Black AE, Redmond AO, Collier PS. Clinical and pharmacokinetic aspects of ciprofloxacin in the treatment of acute exacerbations of pseudomonas infection in cystic fibrosis patients. J Antimicrob Chemother. 1989;24:787–95.

    Article  CAS  PubMed  Google Scholar 

  145. Schultz ANØ, Høiby N, Nielsen XC, Pressler T, Dalhoff K, Duno M, et al. Individual pharmacokinetic variation leads to underdosing of ciprofloxacin in some cystic fibrosis patients. Pediatr Pulmonol. 2017;52:319–23.

    Article  CAS  PubMed  Google Scholar 

  146. Jensen T, Pedersen SS, Nielsen CH, Høiby N, Koch C. The efficacy and safety of ciprofloxacin and ofloxacin in chronic Pseudomonas aeruginosa infection in cystic fibrosis. J Antimicrob Chemother. 1987;20:585–94.

    Article  CAS  PubMed  Google Scholar 

  147. Rubio TT, Miles MV, Lettieri JT, Kuhn RJ, Echols RM, Church DA. Pharmacokinetic disposition of sequential intravenous/oral ciprofloxacin in pediatric cystic fibrosis patients with acute pulmonary exacerbation. Pediatr Infect Dis J. 1997;16:112–7 ((discussion 123–126)).

    Article  CAS  PubMed  Google Scholar 

  148. Payen S, Serreau R, Munck A, Aujard Y, Aigrain Y, Bressolle F, et al. Population pharmacokinetics of ciprofloxacin in pediatric and adolescent patients with acute infections. Antimicrob Agents Chemother. 2003;47:3170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schaefer HG, Stass H, Wedgwood J, Hampel B, Fischer C, Kuhlmann J, et al. Pharmacokinetics of ciprofloxacin in pediatric cystic fibrosis patients. Antimicrob Agents Chemother. 1996;40:29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rajagopalan P, Gastonguay MR. Population pharmacokinetics of ciprofloxacin in pediatric patients. J Clin Pharmacol. 2003;43:698–710.

    Article  CAS  PubMed  Google Scholar 

  151. Guillot E, Sermet I, Ferroni A, Chhun S, Pons G, Zahar J-R, et al. Suboptimal ciprofloxacin dosing as a potential cause of decreased Pseudomonas aeruginosa susceptibility in children with cystic fibrosis. Pharmacotherapy. 2010;30:1252–8.

    Article  CAS  PubMed  Google Scholar 

  152. Goldfarb J, Wormser GP, Inchiosa MA, Guideri G, Diaz M, Gandhi R, et al. Single-dose pharmacokinetics of oral ciprofloxacin in patients with cystic fibrosis. J Clin Pharmacol. 1986;26:222–6.

    Article  CAS  PubMed  Google Scholar 

  153. Pedersen SS, Jensen T, Hvidberg EF. Comparative pharmacokinetics of ciprofloxacin and ofloxacin in cystic fibrosis patients. J Antimicrob Chemother. 1987;20:575–83.

    Article  CAS  PubMed  Google Scholar 

  154. Smith MJ, White LO, Bowyer H, Willis J, Hodson ME, Batten JC. Pharmacokinetics and sputum penetration of ciprofloxacin in patients with cystic fibrosis. Antimicrob Agents Chemother. 1986;30:614–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Höffler D, Koeppe P. Pharmacokinetics of ofloxacin in healthy subjects and patients with impaired renal function. Drugs. 1987;34(Suppl 1):51–5.

    Article  PubMed  Google Scholar 

  156. Pai MP, Allen SE, Amsden GW. Altered steady state pharmacokinetics of levofloxacin in adult cystic fibrosis patients receiving calcium carbonate. J Cyst Fibros. 2006;5:153–7.

    Article  CAS  PubMed  Google Scholar 

  157. Lee CKK, Boyle MP, Diener-West M, Brass-Ernst L, Noschese M, Zeitlin PL. Levofloxacin pharmacokinetics in adult cystic fibrosis. Chest. 2007;131:796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, et al. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol. 2005;43:5085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. King P, Lomovskaya O, Griffith DC, Burns JL, Dudley MN. In vitro pharmacodynamics of levofloxacin and other aerosolized antibiotics under multiple conditions relevant to chronic pulmonary infection in cystic fibrosis. Antimicrob Agents Chemother. 2010;54:143–8.

    Article  CAS  PubMed  Google Scholar 

  161. Li J, Coulthard K, Milne R, Nation RL, Conway S, Peckham D, et al. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother. 2003;52:987–92.

    Article  CAS  PubMed  Google Scholar 

  162. Yapa S, Li J, Patel K, Wilson JW, Dooley MJ, George J, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58:2570–9.

    Article  PubMed  Google Scholar 

  163. Magréault S, Mankikian J, Marchand S, Diot P, Couet W, Flament T, et al. Pharmacokinetics of colistin after nebulization or intravenous administration of colistin methanesulphonate (Colimycin®) to cystic fibrosis patients. J Cyst Fibros. 2020;19:421–6.

    Article  PubMed  Google Scholar 

  164. Li J, Turnidge J, Milne R, Nation RL, Coulthard K. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2001;45:781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodynamics of colistin. Clin Pharmacokinet. 2017;56:1441–60.

    Article  PubMed  Google Scholar 

  166. He H, Li J-C, Nation RL, Jacob J, Chen G, Lee HJ, et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother. 2013;68:2311–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Horcajada JP, Sorlí L, Luque S, Benito N, Segura C, Campillo N, et al. Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int J Antimicrob Agents. 2016;48:725–7.

    Article  CAS  PubMed  Google Scholar 

  168. Keel RA, Schaeftlein A, Kloft C, Pope JS, Knauft RF, Muhlebach M, et al. Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother. 2011;55:3393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Plock N, Buerger C, Joukhadar C, Kljucar S, Kloft C. Does linezolid inhibit its own metabolism? Population pharmacokinetics as a tool to explain the observed nonlinearity in both healthy volunteers and septic patients. Drug Metab Dispos Biol Fate Chem. 2007;35:1816–23.

    Article  CAS  PubMed  Google Scholar 

  170. Bosso JA, Flume PA, Gray SL. Linezolid pharmacokinetics in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2004;48:281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Saralaya D, Peckham DG, Hulme B, Tobin CM, Denton M, Conway S, et al. Serum and sputum concentrations following the oral administration of linezolid in adult patients with cystic fibrosis. J Antimicrob Chemother. 2004;53:325–8.

    Article  CAS  PubMed  Google Scholar 

  172. Santos RP, Prestidge CB, Brown ME, Urbancyzk B, Murphey DK, Salvatore CM, et al. Pharmacokinetics and pharmacodynamics of linezolid in children with cystic fibrosis. Pediatr Pulmonol. 2009;44:148–54.

    Article  PubMed  Google Scholar 

  173. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42:1411–23.

    Article  CAS  PubMed  Google Scholar 

  174. Molina A, Del Campo R, Máiz L, Morosini M-I, Lamas A, Baquero F, et al. High prevalence in cystic fibrosis patients of multiresistant hospital-acquired methicillin-resistant Staphylococcus aureus ST228-SCCmecI capable of biofilm formation. J Antimicrob Chemother. 2008;62:961–7.

    Article  CAS  PubMed  Google Scholar 

  175. Pleasants RA, Michalets EL, Williams DM, Samuelson WM, Rehm JR, Knowles MR. Pharmacokinetics of vancomycin in adult cystic fibrosis patients. Antimicrob Agents Chemother. 1996;40:186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stockmann C, Sherwin CMT, Zobell JT, Lubsch L, Young DC, Olson J, et al. Population pharmacokinetics of intermittent vancomycin in children with cystic fibrosis. Pharmacotherapy. 2013;33:1288–96.

    Article  CAS  PubMed  Google Scholar 

  177. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

    Article  CAS  PubMed  Google Scholar 

  178. McDade EJ, Hewlett JL, Moonnumakal SP, Baker CJ. Evaluation of vancomycin dosing in pediatric cystic fibrosis patients. J Pediatr Pharmacol Ther. 2016;21:155–61.

    PubMed  PubMed Central  Google Scholar 

  179. Amin RW, Guttmann RP, Harris QR, Thomas JW. Prediction of vancomycin dose for recommended trough concentrations in pediatric patients with cystic fibrosis. J Clin Pharmacol. 2018;58:662–5.

    Article  CAS  PubMed  Google Scholar 

  180. Zasowski EJ, Murray KP, Trinh TD, Finch NA, Pogue JM, Mynatt RP, et al. Identification of vancomycin exposure-toxicity thresholds in hospitalized patients receiving intravenous vancomycin. Antimicrob Agents Chemother. 2018;62.

  181. Stockmann C, Olson J, Rashid J, Lubsch L, Young DC, Hersh AL, et al. An evaluation of vancomycin area under the curve estimation methods for children treated for acute pulmonary exacerbations of cystic fibrosis due to methicillin-resistant Staphylococcus aureus. J Clin Pharmacol. 2019;59:198–205.

    Article  CAS  PubMed  Google Scholar 

  182. Knoderer CA, Nichols KR, Lyon KC, Veverka MM, Wilson AC. Are elevated vancomycin serum trough concentrations achieved within the first 7 days of therapy associated with acute kidney injury in children? J Pediatr Infect Dis Soc. 2014;3:127–31.

    Article  Google Scholar 

  183. Le J, Ny P, Capparelli E, Lane J, Ngu B, Muus R, et al. Pharmacodynamic characteristics of nephrotoxicity associated with vancomycin use in children. J Pediatr Infect Dis Soc. 2015;4:e109-116.

    Article  Google Scholar 

  184. Durham SH, Garza KB, Eiland LS. Relationship between vancomycin dosage and serum trough vancomycin concentrations in pediatric patients with cystic fibrosis. Am J Health Syst Pharm. 2016;73:969–74.

    Article  CAS  PubMed  Google Scholar 

  185. Fusco NM, Meaney CJ, Wells C, Frederick CA, Prescott WA. Vancomycin versus vancomycin plus rifampin for the treatment of acute pulmonary exacerbations of cystic fibrosis. J Pediatr Pharmacol Ther. 2018;23:125–31.

    PubMed  PubMed Central  Google Scholar 

  186. Fusco NM, Francisconi R, Meaney CJ, Duman D, Frederick CA, Prescott WA. Association of vancomycin trough concentration with response to treatment for acute pulmonary exacerbation of cystic fibrosis. J Pediatr Infect Dis Soc. 2017;6:e103–8.

    Article  Google Scholar 

  187. Le J, Bradley JS, Murray W, Romanowski GL, Tran TT, Nguyen N, et al. Improved vancomycin dosing in children using area-under-the-curve exposure. Pediatr Infect Dis J. 2013;32:e155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fusco NM, Prescott WA, Meaney CJ. Pharmacokinetic monitoring of vancomycin in cystic fibrosis: is it time to move past trough concentrations? Pediatr Infect Dis J. 2019;38:258–62.

    Article  PubMed  Google Scholar 

  189. Orazi G, O’Toole GA. Pseudomonas aeruginosa alters staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8.

  190. Reed MD, Stern RC, Bertino JS, Myers CM, Yamashita TS, Blumer JL. Dosing implications of rapid elimination of trimethoprim-sulfamethoxazole in patients with cystic fibrosis. J Pediatr. 1984;104:303–7.

    Article  CAS  PubMed  Google Scholar 

  191. Zobell JT, Epps KL, Young DC, Montague M, Olson J, Ampofo K, et al. Utilization of antibiotics for methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. Pediatr Pulmonol. 2015;50:552–9.

    Article  PubMed  Google Scholar 

  192. Beringer PM, Owens H, Nguyen A, Benitez D, Rao A, D’Argenio DZ. Pharmacokinetics of doxycycline in adults with cystic fibrosis. Antimicrob Agents Chemother. 2012;56:70–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg. 2002;35:923–9.

    Article  PubMed  Google Scholar 

  194. Xu X, Abdalla T, Bratcher PE, Jackson PL, Sabbatini G, Wells JM, et al. Doxycycline improves clinical outcomes during cystic fibrosis exacerbations. Eur Respir J. 2017;49.

  195. Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143:225–45.

    Article  CAS  PubMed  Google Scholar 

  196. Southern KW, Barker PM. Azithromycin for cystic fibrosis. Eur Respir J. 2004;24:834–8.

    Article  CAS  PubMed  Google Scholar 

  197. Beringer P, Huynh KMT, Kriengkauykiat J, Bi L, Hoem N, Louie S, et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother. 2005;49:5013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wilms EB, Touw DJ, Heijerman HGM. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28:219–25.

    Article  CAS  PubMed  Google Scholar 

  199. Cipolli M, Cazzola G, Novelli A, Cassetta MI, Fallani S, Mazzei T. Azithromycin concentrations in serum and bronchial secretions of patients with cystic fibrosis. Clin Drug Investig. 2001;21:353–60.

    Article  Google Scholar 

  200. Steinkamp G, Schmitt-Grohe S, Döring G, Staab D, Pfründer D, Beck G, et al. Once-weekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection. Respir Med. 2008;102:1643–53.

    Article  PubMed  Google Scholar 

  201. Wilms EB, Touw DJ, Heijerman HGM. Pharmacokinetics and sputum penetration of azithromycin during once weekly dosing in cystic fibrosis patients. J Cyst Fibros. 2008;7:79–84.

    Article  CAS  PubMed  Google Scholar 

  202. Baumann U, King M, App EM, Tai S, König A, Fischer JJ, et al. Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J. 2004;11:151–5.

    Article  PubMed  Google Scholar 

  203. Wilms EB, Touw DJ, Heijerman HGM, van der Ent CK. Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol. 2012;47:658–65.

    Article  PubMed  Google Scholar 

  204. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57:212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet Lond Engl. 2002;360:978–84.

    Article  CAS  Google Scholar 

  206. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290:1749–56.

    Article  CAS  PubMed  Google Scholar 

  207. McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C, et al. Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J. 2007;30:487–95.

    Article  CAS  PubMed  Google Scholar 

  208. Jacobs RF, Maples HD, Aranda JV, Espinoza GM, Knirsch C, Chandra R, et al. Pharmacokinetics of intravenously administered azithromycin in pediatric patients. Pediatr Infect Dis J. 2005;24:34–9.

    Article  PubMed  Google Scholar 

  209. Zheng Y, Liu S-P, Xu B-P, Shi Z-R, Wang K, Yang J-B, et al. Population pharmacokinetics and dosing optimization of azithromycin in children with community-acquired pneumonia. Antimicrob Agents Chemother. 2018;62:00686–718.

    Article  Google Scholar 

  210. Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, et al. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 1999;43:2877–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. McCoy KS, Quittner AL, Oermann CM, Gibson RL, Retsch-Bogart GZ, Montgomery AB. Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am J Respir Crit Care Med. 2008;178:921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Retsch-Bogart GZ, Quittner AL, Gibson RL, Oermann CM, McCoy KS, Montgomery AB, et al. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis. Chest. 2009;135:1223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Oermann CM, McCoy KS, Retsch-Bogart GZ, Gibson RL, McKevitt M, Montgomery AB. Pseudomonas aeruginosa antibiotic susceptibility during long-term use of aztreonam for inhalation solution (AZLI). J Antimicrob Chemother. 2011;66:2398–404.

    Article  CAS  PubMed  Google Scholar 

  214. Wainwright CE, Quittner AL, Geller DE, Nakamura C, Wooldridge JL, Gibson RL, et al. Aztreonam for inhalation solution (AZLI) in patients with cystic fibrosis, mild lung impairment, and P. aeruginosa. J Cyst Fibros. 2011;10:234–42.

    Article  CAS  PubMed  Google Scholar 

  215. Tiddens HA, De Boeck K, Clancy JP, Fayon M, Arets HG, Bresnik M, Derchak A, Lewis SA, Oermann CM, et al. Open label study of inhaled aztreonam for Pseudomonas eradication in children with cystic fibrosis: the ALPINE study. J Cyst Fibros. 2015;14:111–9.

    Article  CAS  PubMed  Google Scholar 

  216. Assael BM, Pressler T, Bilton D, Fayon M, Fischer R, Chiron R, et al. Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: a comparative efficacy trial. J Cyst Fibros. 2013;12:130–40.

    Article  CAS  PubMed  Google Scholar 

  217. Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 2009;53:3847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Okusanya OO, Bhavnani SM, Hammel JP, Forrest A, Bulik CC, Ambrose PG, et al. Evaluation of the pharmacokinetics and pharmacodynamics of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infections using data from two phase 2 clinical studies. Antimicrob Agents Chemother. 2014;58:5005–15.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Geller DE, Konstan MW, Smith J, Noonberg SB, Conrad C. Novel tobramycin inhalation powder in cystic fibrosis subjects: pharmacokinetics and safety. Pediatr Pulmonol. 2007;42:307–13.

    Article  PubMed  Google Scholar 

  220. Hubert D, Leroy S, Nove-Josserand R, Murris-Espin M, Mely L, Dominique S, et al. Pharmacokinetics and safety of tobramycin administered by the PARI eFlow rapid nebulizer in cystic fibrosis. J Cyst Fibros. 2009;8:332–7.

    Article  CAS  PubMed  Google Scholar 

  221. Govoni M, Poli G, Acerbi D, Santoro D, Cicirello H, Annoni O, et al. Pharmacokinetic and tolerability profiles of tobramycin nebuliser solution 300 mg/4 ml administered by PARI eFlow® rapid and PARI LC Plus® nebulisers in cystic fibrosis patients. Pulm Pharmacol Ther. 2013;26:249–55.

    Article  CAS  PubMed  Google Scholar 

  222. Cooney GF, Lum BL, Tomaselli M, Fiel SB. Absolute bioavailability and absorption characteristics of aerosolized tobramycin in adults with cystic fibrosis. J Clin Pharmacol. 1994;34:255–9.

    Article  CAS  PubMed  Google Scholar 

  223. Geller DE, Pitlick WH, Nardella PA, Tracewell WG, Ramsey BW. Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest. 2002;122:219–26.

    Article  CAS  PubMed  Google Scholar 

  224. Touw DJ, Jacobs FA, Brimicombe RW, Heijerman HG, Bakker W, Briemer DD. Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 1997;41:184–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wang X, Koehne-Voss S, Anumolu SS, Yu J. Population pharmacokinetics of tobramycin inhalation solution in pediatric patients with cystic fibrosis. J Pharm Sci. 2017;106:3402–9.

    Article  CAS  PubMed  Google Scholar 

  226. van Velzen AJ, Uges JWF, Heijerman HGM, Arets BGM, Nuijsink M, van der Wiel-Kooij EC, et al. Pharmacokinetics and safety of tobramycin nebulization with the I-neb and PARI-LC Plus in children with cystic fibrosis: a randomized, crossover study. Br J Clin Pharmacol. 2019;85:1984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ting L, Aksenov S, Bhansali SG, Ramakrishna R, Tang P, Geller DE. Population pharmacokinetics of inhaled tobramycin powder in cystic fibrosis patients. CPT Pharmacometr Syst Pharmacol. 2014;3:e99.

    Article  CAS  Google Scholar 

  228. van Koningsbruggen-Rietschel S, Heuer HE, Merkel N, Posselt HG, Staab D, Sieder C, et al. Pharmacokinetics and safety of an 8 week continuous treatment with once-daily versus twice-daily inhalation of tobramycin in cystic fibrosis patients. J Antimicrob Chemother. 2016;71:711–7.

    Article  PubMed  Google Scholar 

  229. Dopfer R, Brand P, Müllinger B, Hunger T, Häussermann S, Meyer T, et al. Inhalation of tobramycin in patients with cystic fibrosis: comparison of two methods. J Physiol Pharmacol. 2007;58(Suppl 5):141–54.

    PubMed  Google Scholar 

  230. Gibson RL, Emerson J, McNamara S, Burns JL, Rosenfeld M, Yunker A, et al. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am J Respir Crit Care Med. 2003;167:841–9.

    Article  PubMed  Google Scholar 

  231. Berkhout MC, van Velzen AJ, Touw DJ, de Kok BM, Fokkens WJ, Heijerman HGM. Systemic absorption of nasally administered tobramycin and colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2014;69:3112–5.

    Article  CAS  PubMed  Google Scholar 

  232. Lenney W, Edenborough F, Kho P, Kovarik JM. Lung deposition of inhaled tobramycin with eFlow rapid/LC Plus jet nebuliser in healthy and cystic fibrosis subjects. J Cyst Fibros. 2011;10:9–14.

    Article  CAS  PubMed  Google Scholar 

  233. Dequin PF, Faurisson F, Lemarié E, Delatour F, Marchand S, Valat C, et al. Urinary excretion reflects lung deposition of aminoglycoside aerosols in cystic fibrosis. Eur Respir J. 2001;18:316–22.

    Article  CAS  PubMed  Google Scholar 

  234. Sands D, Sapiejka E, Gąszczyk G, Mazurek H, T100 Study Group. Comparison of two tobramycin nebuliser solutions: pharmacokinetic, efficacy and safety profiles of T100 and TNS. J Cyst Fibros. 2014;13:653–60.

    Article  CAS  PubMed  Google Scholar 

  235. Ilowite JS, Gorvoy JD, Smaldone GC. Quantitative deposition of aerosolized gentamicin in cystic fibrosis. Am Rev Respir Dis. 1987;136:1445–9.

    Article  CAS  PubMed  Google Scholar 

  236. Poli G, Acerbi D, Pennini R, Soliani Raschini A, Corrado ME, Eichler HG, et al. Clinical pharmacology study of Bramitob, a tobramycin solution for nebulization, in comparison with Tobi. Paediatr Drugs. 2007;9(Suppl 1):3–9.

    Article  PubMed  Google Scholar 

  237. Geller DE, Rosenfeld M, Waltz DA, Wilmott RW, AeroDose TOBI Study Group. Efficiency of pulmonary administration of tobramycin solution for inhalation in cystic fibrosis using an improved drug delivery system. Chest. 2003;123:28–36.

    Article  CAS  PubMed  Google Scholar 

  238. Weber A, Smith A, Williams-Warren J, Ramsey B, Covert DS. Nebulizer delivery of tobramycin to the lower respiratory tract. Pediatr Pulmonol. 1994;17:331–9.

    Article  CAS  PubMed  Google Scholar 

  239. Eisenberg J, Pepe M, Williams-Warren J, Vasiliev M, Montgomery AB, Smith AL, Aerosolized Tobramycin Study Group, et al. A comparison of peak sputum tobramycin concentration in patients with cystic fibrosis using jet and ultrasonic nebulizer systems. Chest. 1997;111:955–62.

    Article  CAS  PubMed  Google Scholar 

  240. Lenoir G, Antypkin YG, Miano A, Moretti P, Zanda M, Varoli G, et al. Efficacy, safety, and local pharmacokinetics of highly concentrated nebulized tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa. Paediatr Drugs. 2007;9(Suppl 1):11–20.

    Article  PubMed  Google Scholar 

  241. van Velzen AJ, Uges JWF, Le Brun PPH, Shahbabai P, Touw DJ, Heijerman HGM. The influence of breathing mode on tobramycin serum levels using the I-neb AAD system in adults with cystic fibrosis. J Cyst Fibros. 2015;14:748–54.

    Article  PubMed  Google Scholar 

  242. van Velzen AJ, Bos AC, Touw DJ, Tiddens HA, Heijerman HGM, Janssens HM. Pharmacokinetics and tolerability of once daily double dose tobramycin inhalation in cystic fibrosis using controlled and conventional nebulization. J Aerosol Med Pulm Drug Deliv. 2016;29:273–80.

    Article  PubMed  Google Scholar 

  243. Pilcer G, Goole J, Van Gansbeke B, Blocklet D, Knoop C, Vanderbist F, et al. Pharmacoscintigraphic and pharmacokinetic evaluation of tobramycin DPI formulations in cystic fibrosis patients. Eur J Pharm Biopharm. 2008;68:413–21.

    Article  CAS  PubMed  Google Scholar 

  244. Ruddy J, Emerson J, Moss R, Genatossio A, McNamara S, Burns JL, et al. Sputum tobramycin concentrations in cystic fibrosis patients with repeated administration of inhaled tobramycin. J Aerosol Med Pulm Drug Deliv. 2013;26:69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Al-Aloul M, Nazareth D, Walshaw M. Nebulized tobramycin in the treatment of adult CF pulmonary exacerbations. J Aerosol Med Pulm Drug Deliv. 2014;27:299–305.

    Article  CAS  PubMed  Google Scholar 

  246. Stass H, Weimann B, Nagelschmitz J, Rolinck-Werninghaus C, Staab D. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: a phase I, randomized, dose-escalation study. Clin Ther. 2013;35:1571–81.

    Article  CAS  PubMed  Google Scholar 

  247. Stass H, Delesen H, Nagelschmitz J, Staab D. Safety and pharmacokinetics of ciprofloxacin dry powder for inhalation in cystic fibrosis: a phase I, randomized, single-dose, dose-escalation study. J Aerosol Med Pulm Drug Deliv. 2015;28:106–15.

    Article  CAS  PubMed  Google Scholar 

  248. Ratjen F, Rietschel E, Kasel D, Schwiertz R, Starke K, Beier H, et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;57:306–11.

    Article  CAS  PubMed  Google Scholar 

  249. Li J, Nation RL. Comment on: pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;58:222–3 ((author reply 223)).

    Article  CAS  PubMed  Google Scholar 

  250. Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012;56:2683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Cheah S-E, Wang J, Nguyen VTT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70:3291–7.

    CAS  PubMed  Google Scholar 

  252. Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2011;55:4469–74.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436:1171.

    Article  CAS  PubMed  Google Scholar 

  254. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother. 2004;48:1175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Takahashi A, Yomoda S, Ushijima Y, Kobayashi I, Inoue M. Ofloxacin, norfloxacin and ceftazidime increase the production of alginate and promote the formation of biofilm of Pscudomonas aeruginosa in vitro. J Antimicrob Chemother. 1995;36:743–5.

    Article  CAS  PubMed  Google Scholar 

  256. Spino M. Pharmacokinetics of drugs in cystic fibrosis. Clin Rev Allergy. 1991;9:169.

    Article  CAS  PubMed  Google Scholar 

  257. de Groot R, Smith AL. Antibiotic pharmacokinetics in cystic fibrosis. Differences and clinical significance. Clin Pharmacokinet. 1987;13:228–53.

    Article  PubMed  Google Scholar 

  258. Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.

    Article  PubMed  Google Scholar 

  259. Touw DJ, Brimicombe RW, Hodson ME, Heijerman HG, Bakker W. Inhalation of antibiotics in cystic fibrosis. Eur Respir J. 1995;8:1594–604.

    Article  CAS  PubMed  Google Scholar 

  260. Newman SP, Clarke SW. Therapeutic aerosols 1—physical and practical considerations. Thorax. 1983;38:881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Matthews LW, Doershuk CF. Inhalation therapy and postural drainage for the treatment of cystic fibrosis. Bibl Paediatr. 1967;86:297–314.

    CAS  PubMed  Google Scholar 

  262. Langan KM, Kotsimbos T, Peleg AY. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis. Curr Opin Infect Dis. 2015;28:547–56.

    Article  CAS  PubMed  Google Scholar 

  263. Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev. 2017;(4):CD004197.

  264. Smith S, Rowbotham NJ, Charbek E. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Cochrane Database Syst Rev. 2018;(10):CD008319.

  265. Høiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 2011;9:32.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Bulitta JB, Jiao Y, Drescher SK, Oliver A, Louie A, Moya B, et al. Four decades of β-lactam antibiotic pharmacokinetics in cystic fibrosis. Clin Pharmacokinet. 2019;58:143–56.

    Article  CAS  PubMed  Google Scholar 

  267. Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol. 2015;55:313–32.

    Article  CAS  PubMed  Google Scholar 

  268. Heirali AA, Workentine ML, Acosta N, Poonja A, Storey DG, Somayaji R, et al. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. Microbiome. 2017;5:51.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Jullien.

Ethics declarations

Funding

Not applicable.

Conflict of interest

Authors report no conflict interest/competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magréault, S., Roy, C., Launay, M. et al. Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions. Clin Pharmacokinet 60, 409–445 (2021). https://doi.org/10.1007/s40262-020-00981-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00981-0