Abstract
A combined empirical mode decomposition (EMD) and multichannel singular spectrum analysis (MSSA) model (EMD–MSSA model) was used for extraction of the gravity tide correction without a priori information (e.g., station coordinates) from static relative gravimetric data. Static observational data acquired using a CG-5 relative gravimeter over 16 days were used to investigate the feasibility and reliability of the proposed method. The singular spectrum analysis (SSA) method and empirical mode decomposition (EMD)–independent component analysis (ICA) method were also adopted for comparison. Experimental results show that the time series of the gravity tide correction estimated using EMD–MSSA, SSA and EMD–ICA methods are consistent with a theoretical reference (the Longman formula). The gravity tide correction estimated using the EMD–MSSA method is closer to the theoretical model than other methods, the root-mean-square difference of the residuals between estimated values and theoretical values are smallest, and the accuracy of the gravity tide correction time series derived using the EMD–MSSA method is thus highest. The correlation coefficient of extraction results and GT is highest for the results extracted using the EMD–MSSA method. The experimental results show that using the EMD–MSSA model, which combines the advantages of the MSSA and EMD signal processing methods, improves the extraction estimation accuracy and reliability of the gravity tide correction from relative gravimetric data.
Similar content being viewed by others
References
Amari SI, Chen TP, Cichocki A (1997) Stability analysis of learning algorithms for blind source separation. Neural Netw 10(8):1345–1351. https://doi.org/10.1016/S0893-6080(97)00039-7
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129
Cai J, Chen Q (2016) De-noising for NMR oil well logging signals based on empirical mode decomposition and independent component analysis. Arab J Geosci 9(1):1–11. https://doi.org/10.1007/s12517-015-2175-y
Chen Q, Dam VT, Sneeuw N et al (2013) Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 72(12):25–35. https://doi.org/10.1016/j.jog.2013.05.005
Cheung YM, Xu L (2001) Independent component ordering in ICA time series analysis. Neurocomputing 41(1):145–152
Crescentini L, Amoruso A, Scarpa R (1999) Constraints on slow earthquake dynamics from a swarm in central Italy. Science 286(5447):2132–2134. https://doi.org/10.1126/science.286.5447.2132
Davies ME, James CJ (2007) Source separation using single channel ICA. Signal Process 87(8):1819–1832. https://doi.org/10.1016/j.sigpro.2007.01.011
Ducarme B, Sun HP (2001) Tidal gravity results from GGP network in connection with tidal loading and Earth response. J Geod Soc Jpn 47(1):308–315. https://doi.org/10.11366/sokuchi1954.47.308
Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geodesy 86(7):477–497. https://doi.org/10.1007/s00190-011-0532-5
Forootan E, Kusche J (2013) Separation of deterministic signals, using independent component analysis (ICA). Stud Geophys Geod 57(1):17–26. https://doi.org/10.1007/s11200-012-0718-1
Gokhan G, Jin SG (2016) Evaluation of ocean tide loading effects on GPS-estimated precipitable water vapour in Turkey. Geodesy Geodyn 7(1):32–38. https://doi.org/10.1016/j.geog.2015.12.008
Guo J, Mu D, Liu X, Yan HM, Dai HL (2014) Equivalent water height extracted from GRACE gravity field model with robust independent component analysis. Acta Geophys 62(4):953–972. https://doi.org/10.2478/s11600-014-0210-0
Guo JY, Gao WZ, Yu HJ et al (2018) Gravity tides extracted from relative gravimetric data with singular spectrum analysis. Chin J Geophys (in Chinese) 61(10):3889–3902. https://doi.org/10.6038/cjg2018L0460
Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257
Hsien W (2004) Nonlinear multichannel and time series analysis by neural network methods. Rev Geophys 42:1003–1027
Hu XG, Liu LT, Ducarme B et al (2006) Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands. Phys Earth Planet Inter 159(1–2):59–70. https://doi.org/10.1016/j.pepi.2006.06.001
Hu XG, Liu LT, Ducarme B et al (2007) Estimation of the pole tide gravimetric factor at the Chandler period through wavelet filtering. Geophys J Inter 169(3):821–829. https://doi.org/10.1111/j.1365-246X.2007.03330.x
Huang NE, Shen Z, Long SR, Wu M, Shih HH, Zheng Q et al (1998a) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193
Huang NE et al (1998b) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995. https://doi.org/10.1098/rspa.1998.0193
Hwang C, Wang CG, Lee LH (2002) Adjustment of relative gravity measurements using weighted and datum-free constraints. Comput Geosci 28(9):1005–1015. https://doi.org/10.1016/S0098-3004(02)00005-5
Hwang C, Cheng TC, Cheng CC, Hung WC (2010) Land subsidence using absolute and relative gravimetry: a case study in central Taiwan. Surv Rev 42(315):27–39. https://doi.org/10.1179/003962609X451672
Hyvärinen A, Oja E (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9(7):1483–1492. https://doi.org/10.1162/neco.1997.9.7.1483
Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430. https://doi.org/10.1016/S0893-6080(00)00026-5
Kasahara J (2002) Tides, earthquakes, and volcanoes. Science 297(5580):348–349. https://doi.org/10.1126/science.1074601
Kondrashov D, Berloff P (2015) Stochastic modeling of decadal variability in ocean gyres. Geophys Res Lett 42(5):1543–1553. https://doi.org/10.1002/2014GL062871
Lederer M (2009) Accuracy of the relative gravity measurement. Acta Geodyn Geomater 6(3):383–390
Lefèvre F, Lyard FH, Le Provost C (2000) FES98: a new global tide finite element solution independent of altimetry. Geophys Res Lett 27(17):2717–2720. https://doi.org/10.1029/1999g1011315
Lei MF, Wang QJ, Liu XL et al (2017) Influence of ocean tidal loading on InSAR offshore areas deformation monitoring. Geodesy and Geodyn 8(1):70–76. https://doi.org/10.1016/j.geog.2016.09.004
Lin J, Zhang A (2005) Fault feature separation using wavelet-ICA filter. NDT&E Int 38(6):421–427. https://doi.org/10.1016/j.ndteint.2004.11.005
Liu LT, Xu HZ (2004) Wavelets in airborne gravimetry. Chin J Geophys (in Chinese) 47(3):490–494. https://doi.org/10.3321/j.issn:0001-5733
Longman IM (1959) Formulas for computing the tidal accelerations due to the moon and sun. J Geophys Res 64(12):2351–2355. https://doi.org/10.1029/jz064i012p02351
McFadden PD (1986) Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration. J Vib Acoust 108(2):165–170. https://doi.org/10.1115/1.3269317
Métivier L, de-Viron O, Conrad CP, Renault S, Diament M (2009) Evidence of earthquake triggering by the solid earth tides. Earth Planet Sci Lett 278(3):370–375. https://doi.org/10.1016/j.epsl.2008.12.024
Mijovic B, De-Vos M, Gligorijevic I, Taelman J, Van Huffel S (2010) Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans Biomed Eng 57(9):2188–2196. https://doi.org/10.1109/TBME.2010.2051440
Oropeza V, Sacchi M (2011) Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76(3):25–32. https://doi.org/10.1190/1.3552706
Penna NT, Bos MS, Baker TF et al (2008) Assessing the accuracy of predicted ocean tide loading displacement values. J Geodesy 82(12):893–907. https://doi.org/10.1007/s0019000802202
Rangleova E, Vanderwal W, Braun J et al (2007) Analysis of gravity recovery and climate experiment time-variable MSSA redistribution signals over north America by means of principal component analysis. J Geophys Res 112(F3):256–260
Rilling G, Flandrin P, Goncalves P (2003) On empirical mode decomposition and its algorithms. In: IEEE-IURASIP workshop on nonlinear signal and image processing, NSIP-03, Grado (I), vol 3, pp 8–11
Scintrex Limited (2009) CG-5 Scintrex autograv system operation manual V5.0, pp 99–172
Shen Y, Guo J, Liu X, Kong Q, Guo L, Li W (2018) Long-term prediction of polar motion using a combined SSA and ARMA model. J Geodesy 92(3):333–343. https://doi.org/10.1007/s00190-017-1065-3
Stone JV (2002) Independent component analysis: an introduction. Trends Cognit Sci 6(2):59–64. https://doi.org/10.1016/S1364-6613(00)01813-1
Sun HP, Hsu HT, Jentzsch G et al (2002) Tidal gravity observations obtained with a superconducting gravimeter at Wuhan/China and its application to geodynamics. J Geodyn 33(1–2):187–198. https://doi.org/10.1016/s02643707(01)000631
Sun HP, Xu JQ, Ducarme B (2003) Experimental earth tidal models in considering nearly diurnal free wobble of the Earth’s liquid core. Chin Sci Bull 48(9):935–940. https://doi.org/10.1007/bf03325679
Taguchi E, Stammer D, Zahel W (2014) Inferring deep ocean tidal energy dissipation from the global high resolution data-assimilative HAMTIDE model. J Geophys Res Oceans 119(7):4573–4592. https://doi.org/10.1002/2013jc009766
Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: atoolkit for short, noisy chaotic signals. Phys D Nonlinear Phenom 58:95–126
Wyatt MG, Kravtsov S, Tsonis AA (2012) Atlantic multi decadal oscillation and northern hemisphere’s climate variability. Clim Dyn 38(5):929–949. https://doi.org/10.1007/s00382-011-1071-8
Yang WC, Shi ZQ, Hou ZZ et al (2001) Discrete wavelet transform for multiple decomposition of gravity anomalies. Chin J Geophys (in Chinese) 44(4):534–541. https://doi.org/10.1002/cjg2.171
Yu HJ, Guo JY, Li JL et al (2015) Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis. Geodesy Geodyn 6(2):143–150. https://doi.org/10.1016/j.geog.2015.01.006
Yu HJ, Guo JY, Kong Q et al (2018) Gravity tides extracted from relative gravimeter data by combining empirical mode decomposition and independent component analysis. Pure appl Geophys 175(5):1683–1697. https://doi.org/10.1007/s00024-018-1864-3
Zabalza J, Ren JC, Wang Z et al (2014) Singular spectrum analysis for effective feature extraction in hyperspectral imaging. Geosci Remote Sens Lett IEEE 11(11):1886–1890
Zarzoso V, Comon P (2010) Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Trans Neural Netw 21(2):248–261. https://doi.org/10.1109/TNN.2009.035920
Zhou Z, Shan XM, Zhang L et al (2008) The gravity tide of Kunming & Xiaguan based on the HHT. Chin J Geophys (in Chinese) 51(3):836–844
Zhou JC, Xu JQ, Sun HP (2009) Accurate correction models for tidal gravity in Chinese continent. Chin J Geophys 52(6):1474–1482 (in Chinese)
Acknowledgements
We thank the anonymous reviewers for their valuable comments and suggestions that helped improve the quality of this manuscript. And we thank Glenn Pennycook, MSc, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. This study is partially supported by the National Natural Science Foundation of China Grant Numbers 41801316, 41774001, 41774021, 41874091, and 61601132; A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
Authors confirm that this article content has no conflict of interest.
Rights and permissions
About this article
Cite this article
Wang, J., Guo, J., Yu, H. et al. A combined EMD and MSSA model for the extraction of gravity tide correction from relative gravimetric data. Acta Geod Geophys 54, 583–618 (2019). https://doi.org/10.1007/s40328-019-00272-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40328-019-00272-6