Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Persistent homology and Euler integral transforms

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

The Euler calculus—an integral calculus based on Euler characteristic as a valuation on constructible functions—is shown to be an incisive tool for answering questions about injectivity and invertibility of recent transforms based on persistent homology for shape characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This structure, though very helpful for generating clean definitions, can be ignored by the reader for whom sheaves are unfamiliar.

References

  • Baryshnikov, Y., Ghrist, R., Lipsky, D.: Inversion of Euler integral transforms with applications to sensor data. Inverse Probl. 27(12) (2011)

    Article  MathSciNet  Google Scholar 

  • Belton, R., Fasy, B., Mertz, R., Micka, S., Millman, D., Salinas, D., Schenfisch, A., Schupbach, J., Williams, L.: Learning simplicial complexes from persistence diagrams. arXiv:1805.10716 [cs.CG]

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  • Crawford, L., Monod, A., Chen, A., Mukherjee, S., Rabadan, R.: Functional data analysis using a topological summary statistic: the smooth Euler characteristic transform. arXiv:1611.06818 [stat.AP]

  • Curry, J., Ghrist, R., Robinson, M.: Euler calculus and its applications to signals and sensing. Proc. Sympos. Appl. Math, AMS (2012)

  • Curry, J., Mukherjee, S., Turner, K.: How many directions determine a shape and other sufficiency results for two topological transforms. arXiv:1805.09782 [math.AT]

  • Edelsbrunner, H., Harer, J.: Computational topology: an introduction. AMS (2010)

  • Schapira, P.: Tomography of constructible functions. Applied algebra, algebraic algorithms, and error correcting codes. Springer, Berlin, pp. 427–435 (1995)

    Chapter  Google Scholar 

  • Turner, K., Mukherjee, S., Boyer, D.: Persistent homology transforms for modelling shapes and surfaces. Inf. Inference J. IMA 3(4), 310–344 (2014)

    Article  Google Scholar 

  • van den Dries, L.: Tame Topology and O-Minimal Structures, London Mathematical Society Lecture Notes. Cambridge University press, Cambridge (1998)

    Book  Google Scholar 

Download references

Acknowledgements

This work supported by the Office of the Assistant Secretary of Defense Research and Engineering through a Vannevar Bush Faculty Fellowship, ONR N00014-16-1-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy Mai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghrist, R., Levanger, R. & Mai, H. Persistent homology and Euler integral transforms. J Appl. and Comput. Topology 2, 55–60 (2018). https://doi.org/10.1007/s41468-018-0017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-018-0017-1

Keywords

Mathematics Subject Classification