Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

We present the methodology of Multiple-Criteria Decision Aiding (MCDA) based on preference modelling in terms of “if. ⋯, then ⋯” decision rules. The basic assumption of the decision rule approach is that the decision maker (DM) accepts to give preferential information in terms of examples of decisions and looks for simple rules justifying her decisions. An important advantage of this approach is the possibility of handling inconsistencies in the preferential information, resulting from hesitations of the DM. The proposed methodology is based on the elementary, natural and rational principle of dominance. It says that if action is at least as good as action on each criterion from a considered family, then is also comprehensively at least as good as The set of decision rules constituting the preference model is induced from the preferential information using a knowledge discovery technique properly modified, so as to handle the dominance principle. The mathematical basis of the decision rule approach to MCDA is the Dominance-based Rough Set Approach (DRSA) developed by the authors. We present some basic applications of this approach, along with didactic examples whose aim is to show in an easy way how DRSA can be used in various contexts of MCDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. J. Blaszczynski, S. Greco, and R. Slowinski. Multi-criteria classification using decision rules. European Journal of Operational Research, to appear, 2004.

    Google Scholar 

  2. D. Bouyssou and M. Pirlot. Nontransitive decomposable conjoint measurement. Journal of Mathematical Psychology, 46:677–703, 2002.

    Article  MathSciNet  Google Scholar 

  3. G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1953.

    MathSciNet  Google Scholar 

  4. K. Dembczynski, S. Greco, and R. Slowinski. Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria. Control & Cybernetics, 31:891–920, 2002.

    Google Scholar 

  5. P.C. Fishburn. Methods for estimating additive utilities. Management Science, 13:435–453, 1967.

    Google Scholar 

  6. J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht, 1994.

    Google Scholar 

  7. S. Giove, S. Greco, B. Matarazzo, and R. Slowinski. Variable consistency monotonic decision trees. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 247–254, Berlin, 2002. Springer-Verlag.

    Google Scholar 

  8. M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92:167–189, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Greco, M. Inuiguchi, and R. Slowinski. Dominance-based rough set approach using possibility and necessity measures. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 85–92, Berlin, 2002. Springer-Verlag.

    Google Scholar 

  10. S. Greco, M. Inuiguchi, and R. Slowinski. A new proposal for fuzzy rough approximations and gradual decision rule representation. In D. Dubois, J. Grzymala-Busse, M. Inuiguchi, and L. Polkowski, editors, Rough Fuzzy and Fuzzy Rough Sets. Springer-Verlag, Berlin, 2004.

    Google Scholar 

  11. S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. An algorithm for induction of decision rules consistent with dominance principle. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 304–313, Berlin, 2001. Springer-Verlag.

    Google Scholar 

  12. S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Variable consistency model of dominance-based rough set approach. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 170–181, Berlin, 2001. Springer-Verlag.

    Google Scholar 

  13. S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Importance and interaction of conditions in decision rules. In J.J. Alpigini, J. F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 255–262, Berlin, 2002. Springer-Verlag.

    Google Scholar 

  14. S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Mining association rules in preference-ordered data. In M.-S. Hacid, Z.W. Ras, D.A. Zighed, and Y. Kodratoffa, editors, Foundations of Intelligent Systems, pages 442–450, Berlin, 2002. Springer-Verlag.

    Google Scholar 

  15. S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy measures technique for rough set analysis. In Proc. European Congress on Intelligent Techniques & Soft Computing, 1998.

    Google Scholar 

  16. S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy similarity relation as a basis for rough approximations. In L. Polkowski and A. Skowron, editors, Rough Sets and Current Trends in Computing, pages 283–289, Berlin, 1998. Springer-Verlag.

    Google Scholar 

  17. S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to evaluation of bankruptcy risk. In C. Zopounidis, editor, Rough Fuzzy and Fuzzy Rough Sets, pages 121–136. Kluwer, Dordrecht, 1998.

    Google Scholar 

  18. S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to multicriteria and multiattribute classification. In L. Polkowski and A. Skowron, editors, Rough Sets and Current Trends in Computing, pages 60–67, Berlin, 1998. Springer-Verlag.

    Google Scholar 

  19. S. Greco, B. Matarazzo, and R. Slowinski. Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In N. Zhong, A. Skowron, and S. Ohsuga, editors, New Directions in Rough Sets, Data Mining and Granular-Soft Computing, pages 146–157, Berlin, 1999. Springer-Verlag.

    Google Scholar 

  20. S. Greco, B. Matarazzo, and R. Slowinski. Rough approximation of a preference relation by dominance relations. European Journal of Operational Research, 117:63–83, 1999.

    Article  Google Scholar 

  21. S. Greco, B. Matarazzo, and R. Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, 138:247–259, 1999.

    MathSciNet  Google Scholar 

  22. S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129:1–47, 1999.

    MathSciNet  Google Scholar 

  23. S. Greco, B. Matarazzo, and R. Slowinski. The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Stewart, and T. Hanne, editors, Advances in Multiple Criteria Decision Making, pages 14.1–14.59. Kluwer, Dordrecht, 1999.

    Google Scholar 

  24. S. Greco, B. Matarazzo, and R. Slowinski. Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In S.H. Zanakis, G. Doukidis, and C. Zopounidis, editors, Decision Making: Recent Developments and Worldwide Applications, pages 295–316. Kluwer, Dordrecht, 2000.

    Google Scholar 

  25. S. Greco, B. Matarazzo, and R. Slowinski. Decision rules. In Encyclopedia of Management, 4th edition, pages 178–183. Gale Group, Farmington Hills, MI, 2000.

    Google Scholar 

  26. S. Greco, B. Matarazzo, and R. Slowinski. Extension of the rough set approach to multicriteria decision support. INFOR, 38:161–196, 2000.

    Google Scholar 

  27. S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy dominance-based rough set approach. In F. Masulli, R. Parenti, and G. Pasi, editors, Advances in Fuzzy Systems and Intelligent Technologies, pages 56–66. Shaker Publishing, Maastricht (NL), 2000.

    Google Scholar 

  28. S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In J. Fodor, B. De Baets, and P. Perny, editors, Preferences and Decisions under Incomplete Knowledge, pages 131–151. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  29. S. Greco, B. Matarazzo, and R. Slowinski. Rough set processing of vague information using fuzzy similarity relations. In C.S. Calude and G. Paun, editors, Finite Versus Infinite — Contributions to an Eternal Dilemma, pages 149–173. Springer-Verlag, London, 2000.

    Google Scholar 

  30. S. Greco, B. Matarazzo, and R. Slowinski. Assessment of a value of information using rough sets and fuzzy measures. In J. Chojcan and J. Leski, editors, Fuzzy Sets and their Applications, pages 185–193, Gliwice, 2001. Silesian University of Technology Press.

    Google Scholar 

  31. S. Greco, B. Matarazzo, and R. Slowinski. Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Aide Multi Critère à la Décision — Multiple Criteria Decision Aiding, pages 117–144, Ispra, 2001. European Commission Report, EUR 19808 EN.

    Google Scholar 

  32. S. Greco, B. Matarazzo, and R. Slowinski. Rough set approach to decisions under risk. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 160–169, Berlin, 2001. Springer-Verlag.

    Google Scholar 

  33. S. Greco, B. Matarazzo, and R. Slowinski. Multicriteria classification, chapter 16.1.9. In W. Kloesgen and J. Zytkow, editors, Handbook of Data Mining and Knowledge Discovery, pages 318–328. Oxford University Press, New York, 2002.

    Google Scholar 

  34. S. Greco, B. Matarazzo, and R. Slowinski. Preference representation by means of conjoint measurement and decision rule model. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Van-derpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria — Essays in Honor of Bernard Roy, pages 263–313. Kluwer, Boston, 2002.

    Google Scholar 

  35. S. Greco, B. Matarazzo, and R. Slowinski. Rough approximation by dominance relations. International Journal of Intelligent Systems, 17:153–171, 2002.

    Article  Google Scholar 

  36. S. Greco, B. Matarazzo, and R. Slowinski. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research, to appear, 2004.

    Google Scholar 

  37. S. Greco, B. Matarazzo, R. Slowinski, and A. Tsoukias. Exploitation of a rough approximation of the outranking relation in multicriteria choice and ranking. In T.J. Stewart and R.C. van den Honert, editors, Trends in Multicriteria Decision Making, pages 45–60. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  38. S. Greco, B. Predki, and R. Slowinski. Searching for an equivalence between decision rules and concordance-discordance preference model in multicriteria choice problems. Control and Cybernetics, 31:921–935, 2002.

    Google Scholar 

  39. E. Jacquet-Lagrèze. Systèmes de décision et acteurs multiples — Contribution à une théorie de l’action pour les sciences des organisations. Thèse de doctorat d’état, Université de Paris-Dauphine, Paris, France, 1981.

    Google Scholar 

  40. R.L. Keeney and H. Raiffa. Decision with Multiple Objectives’ Preferences and value Tradeoffs. Wiley, New York, 1976.

    Google Scholar 

  41. M. Kryszkiewicz. Rough set approach to incomplete information systems. Information Sciences, 112:39–49, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Kryszkiewicz. Rules in incomplete information systems. Information Sciences, 113:271–292, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. G. March. Bounded rationality, ambiguity, and the engineering of choice. In D. E. Bell, H. Raiffa, and A. Tversky, editors, Decision Making, Descriptive, Normative and Prescriptive Interactions, pages 33–58. Cambridge University Press, New York, 1988.

    Google Scholar 

  44. V. Mousseau. Problèmes liés à l’évaluation de l’importance en aide multicritère à la décision: Réflexions théoriques et expérimentations. Thèse de doctorat d’état, Université de Paris-Dauphine, Paris, France, 1993.

    Google Scholar 

  45. T. Murofushi and S. Soneda. Techniques for reading fuzzy measures (iii): interaction index. In Proc. 9th Fuzzy Systems Symposium, Sapporo, Japan, May 1993, pages 693–696, 2002.

    Google Scholar 

  46. Z. Pawlak. Rough Sets. International Journal of Information & Computer Sciences, 11:341–356, 1982.

    MATH  MathSciNet  Google Scholar 

  47. Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht, 1991.

    Google Scholar 

  48. Z. Pawlak and R. Slowinski. Rough set approach to multi-attribute decision analysis. European Journal of Operational Research, 72:443–459, 1994.

    Article  Google Scholar 

  49. L. Polkowski. Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg, 2002.

    Google Scholar 

  50. B. Roy. The outranking approach and the foundation of ELECTRE methods. Theory and Decision, 31:49–73, 1991.

    Article  MathSciNet  Google Scholar 

  51. B. Roy. Decision science or decision aid science? European Journal of Operational Research, 66:184–203, 1993.

    Article  Google Scholar 

  52. L. S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton, 1953.

    Google Scholar 

  53. P. Slovic. Choice between equally-valued alternatives. Journal of Experimental Psychology: Human Perception Performance, 1:280–287, 1975.

    Google Scholar 

  54. R. Slowinski. Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht, 1992.

    Google Scholar 

  55. R. Slowinski. Rough set learning of preferential attitude in multi-criteria decision making. In J. Komorowski and Z. Ras, editors, Methodologies for Intelligent Systems, pages 642–651. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  56. R. Slowinski, S. Greco, and B. Matarazzo. Mining decision-rule preference model from rough approximation of preference relation. In Proc. IEEE Annual Int. Conference on Computer Software & Applications (COMPSAC 2002), pages 1129–1134, Oxford, 2002.

    Google Scholar 

  57. R. Slowinski, S. Greco, and B. Matarazzo. Rough set analysis of preference-ordered data. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 44–59, Berlin, 2002. Springer-Verlag.

    Google Scholar 

  58. R. Slowinski and D. Vanderpooten. Similarity relation as a basis for rough approximations. In P.P. Wang, editor, Advances in Machine Intelligence & Soft-Computing, vol.IV, pages 17–33. Duke University Press, Durham, NC, 1997.

    Google Scholar 

  59. R. Slowinski and D. Vanderpooten. A generalized definition of rough approximations based on similarity. IEEE Transactions on Data and Knowledge Engineering, 12:331–336, 2000.

    Google Scholar 

  60. J. Stefanowski. On rough set based approaches to induction of decision rules. In L. Polkowski and A. Skowron, editors, Rough Sets in Data Mining and Knowledge Discovery. Vol.1, pages 500–529. Physica-Verlag, Heidelberg, 1998.

    Google Scholar 

  61. M. Sugeno. Theory of fuzzy integrals and its applications. Doctoral thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.

    Google Scholar 

  62. R. Susmaga, R Slowinski, S. Greco, and B. Matarazzo. Generation of reducts and rules in multi-attribute and multi-criteria classification. Control and Cybernetics, 29:969–988, 2000.

    Google Scholar 

  63. W. Ziarko. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993:39–59, 1993.

    MATH  MathSciNet  Google Scholar 

  64. W. Ziarko. Rough sets as a methodology for data mining. In L. Polkowski and A. Skowron, editors, Rough Sets in Knowledge Discovery. Vol. 1, pages 554–576. Physica-Verlag, Heidelberg, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Greco, S., Matarazzo, B., Słowinński, R. (2005). Decision Rule Approach. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-5_13

Download citation

Publish with us

Policies and ethics