Abstract
We present the methodology of Multiple-Criteria Decision Aiding (MCDA) based on preference modelling in terms of “if. ⋯, then ⋯” decision rules. The basic assumption of the decision rule approach is that the decision maker (DM) accepts to give preferential information in terms of examples of decisions and looks for simple rules justifying her decisions. An important advantage of this approach is the possibility of handling inconsistencies in the preferential information, resulting from hesitations of the DM. The proposed methodology is based on the elementary, natural and rational principle of dominance. It says that if action is at least as good as action on each criterion from a considered family, then is also comprehensively at least as good as The set of decision rules constituting the preference model is induced from the preferential information using a knowledge discovery technique properly modified, so as to handle the dominance principle. The mathematical basis of the decision rule approach to MCDA is the Dominance-based Rough Set Approach (DRSA) developed by the authors. We present some basic applications of this approach, along with didactic examples whose aim is to show in an easy way how DRSA can be used in various contexts of MCDA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Reference
J. Blaszczynski, S. Greco, and R. Slowinski. Multi-criteria classification using decision rules. European Journal of Operational Research, to appear, 2004.
D. Bouyssou and M. Pirlot. Nontransitive decomposable conjoint measurement. Journal of Mathematical Psychology, 46:677–703, 2002.
G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1953.
K. Dembczynski, S. Greco, and R. Slowinski. Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria. Control & Cybernetics, 31:891–920, 2002.
P.C. Fishburn. Methods for estimating additive utilities. Management Science, 13:435–453, 1967.
J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht, 1994.
S. Giove, S. Greco, B. Matarazzo, and R. Slowinski. Variable consistency monotonic decision trees. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 247–254, Berlin, 2002. Springer-Verlag.
M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92:167–189, 1997.
S. Greco, M. Inuiguchi, and R. Slowinski. Dominance-based rough set approach using possibility and necessity measures. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 85–92, Berlin, 2002. Springer-Verlag.
S. Greco, M. Inuiguchi, and R. Slowinski. A new proposal for fuzzy rough approximations and gradual decision rule representation. In D. Dubois, J. Grzymala-Busse, M. Inuiguchi, and L. Polkowski, editors, Rough Fuzzy and Fuzzy Rough Sets. Springer-Verlag, Berlin, 2004.
S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. An algorithm for induction of decision rules consistent with dominance principle. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 304–313, Berlin, 2001. Springer-Verlag.
S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Variable consistency model of dominance-based rough set approach. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 170–181, Berlin, 2001. Springer-Verlag.
S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Importance and interaction of conditions in decision rules. In J.J. Alpigini, J. F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 255–262, Berlin, 2002. Springer-Verlag.
S. Greco, Matarazzo, R. Slowinski, and J. Stefanowski. Mining association rules in preference-ordered data. In M.-S. Hacid, Z.W. Ras, D.A. Zighed, and Y. Kodratoffa, editors, Foundations of Intelligent Systems, pages 442–450, Berlin, 2002. Springer-Verlag.
S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy measures technique for rough set analysis. In Proc. European Congress on Intelligent Techniques & Soft Computing, 1998.
S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy similarity relation as a basis for rough approximations. In L. Polkowski and A. Skowron, editors, Rough Sets and Current Trends in Computing, pages 283–289, Berlin, 1998. Springer-Verlag.
S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to evaluation of bankruptcy risk. In C. Zopounidis, editor, Rough Fuzzy and Fuzzy Rough Sets, pages 121–136. Kluwer, Dordrecht, 1998.
S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to multicriteria and multiattribute classification. In L. Polkowski and A. Skowron, editors, Rough Sets and Current Trends in Computing, pages 60–67, Berlin, 1998. Springer-Verlag.
S. Greco, B. Matarazzo, and R. Slowinski. Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In N. Zhong, A. Skowron, and S. Ohsuga, editors, New Directions in Rough Sets, Data Mining and Granular-Soft Computing, pages 146–157, Berlin, 1999. Springer-Verlag.
S. Greco, B. Matarazzo, and R. Slowinski. Rough approximation of a preference relation by dominance relations. European Journal of Operational Research, 117:63–83, 1999.
S. Greco, B. Matarazzo, and R. Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, 138:247–259, 1999.
S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129:1–47, 1999.
S. Greco, B. Matarazzo, and R. Slowinski. The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Stewart, and T. Hanne, editors, Advances in Multiple Criteria Decision Making, pages 14.1–14.59. Kluwer, Dordrecht, 1999.
S. Greco, B. Matarazzo, and R. Slowinski. Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In S.H. Zanakis, G. Doukidis, and C. Zopounidis, editors, Decision Making: Recent Developments and Worldwide Applications, pages 295–316. Kluwer, Dordrecht, 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Decision rules. In Encyclopedia of Management, 4th edition, pages 178–183. Gale Group, Farmington Hills, MI, 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Extension of the rough set approach to multicriteria decision support. INFOR, 38:161–196, 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy dominance-based rough set approach. In F. Masulli, R. Parenti, and G. Pasi, editors, Advances in Fuzzy Systems and Intelligent Technologies, pages 56–66. Shaker Publishing, Maastricht (NL), 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In J. Fodor, B. De Baets, and P. Perny, editors, Preferences and Decisions under Incomplete Knowledge, pages 131–151. Physica-Verlag, Heidelberg, 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Rough set processing of vague information using fuzzy similarity relations. In C.S. Calude and G. Paun, editors, Finite Versus Infinite — Contributions to an Eternal Dilemma, pages 149–173. Springer-Verlag, London, 2000.
S. Greco, B. Matarazzo, and R. Slowinski. Assessment of a value of information using rough sets and fuzzy measures. In J. Chojcan and J. Leski, editors, Fuzzy Sets and their Applications, pages 185–193, Gliwice, 2001. Silesian University of Technology Press.
S. Greco, B. Matarazzo, and R. Slowinski. Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria. In A. Colorni, M. Paruccini, and B. Roy, editors, A-MCD-A: Aide Multi Critère à la Décision — Multiple Criteria Decision Aiding, pages 117–144, Ispra, 2001. European Commission Report, EUR 19808 EN.
S. Greco, B. Matarazzo, and R. Slowinski. Rough set approach to decisions under risk. In W. Ziarko and Y. Yao, editors, Rough Sets and Current Trends in Computing, pages 160–169, Berlin, 2001. Springer-Verlag.
S. Greco, B. Matarazzo, and R. Slowinski. Multicriteria classification, chapter 16.1.9. In W. Kloesgen and J. Zytkow, editors, Handbook of Data Mining and Knowledge Discovery, pages 318–328. Oxford University Press, New York, 2002.
S. Greco, B. Matarazzo, and R. Slowinski. Preference representation by means of conjoint measurement and decision rule model. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Van-derpooten, and Ph. Vincke, editors, Aiding Decisions with Multiple Criteria — Essays in Honor of Bernard Roy, pages 263–313. Kluwer, Boston, 2002.
S. Greco, B. Matarazzo, and R. Slowinski. Rough approximation by dominance relations. International Journal of Intelligent Systems, 17:153–171, 2002.
S. Greco, B. Matarazzo, and R. Slowinski. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research, to appear, 2004.
S. Greco, B. Matarazzo, R. Slowinski, and A. Tsoukias. Exploitation of a rough approximation of the outranking relation in multicriteria choice and ranking. In T.J. Stewart and R.C. van den Honert, editors, Trends in Multicriteria Decision Making, pages 45–60. Springer-Verlag, Berlin, 1998.
S. Greco, B. Predki, and R. Slowinski. Searching for an equivalence between decision rules and concordance-discordance preference model in multicriteria choice problems. Control and Cybernetics, 31:921–935, 2002.
E. Jacquet-Lagrèze. Systèmes de décision et acteurs multiples — Contribution à une théorie de l’action pour les sciences des organisations. Thèse de doctorat d’état, Université de Paris-Dauphine, Paris, France, 1981.
R.L. Keeney and H. Raiffa. Decision with Multiple Objectives’ Preferences and value Tradeoffs. Wiley, New York, 1976.
M. Kryszkiewicz. Rough set approach to incomplete information systems. Information Sciences, 112:39–49, 1998.
M. Kryszkiewicz. Rules in incomplete information systems. Information Sciences, 113:271–292, 1999.
J. G. March. Bounded rationality, ambiguity, and the engineering of choice. In D. E. Bell, H. Raiffa, and A. Tversky, editors, Decision Making, Descriptive, Normative and Prescriptive Interactions, pages 33–58. Cambridge University Press, New York, 1988.
V. Mousseau. Problèmes liés à l’évaluation de l’importance en aide multicritère à la décision: Réflexions théoriques et expérimentations. Thèse de doctorat d’état, Université de Paris-Dauphine, Paris, France, 1993.
T. Murofushi and S. Soneda. Techniques for reading fuzzy measures (iii): interaction index. In Proc. 9th Fuzzy Systems Symposium, Sapporo, Japan, May 1993, pages 693–696, 2002.
Z. Pawlak. Rough Sets. International Journal of Information & Computer Sciences, 11:341–356, 1982.
Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht, 1991.
Z. Pawlak and R. Slowinski. Rough set approach to multi-attribute decision analysis. European Journal of Operational Research, 72:443–459, 1994.
L. Polkowski. Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg, 2002.
B. Roy. The outranking approach and the foundation of ELECTRE methods. Theory and Decision, 31:49–73, 1991.
B. Roy. Decision science or decision aid science? European Journal of Operational Research, 66:184–203, 1993.
L. S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton, 1953.
P. Slovic. Choice between equally-valued alternatives. Journal of Experimental Psychology: Human Perception Performance, 1:280–287, 1975.
R. Slowinski. Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht, 1992.
R. Slowinski. Rough set learning of preferential attitude in multi-criteria decision making. In J. Komorowski and Z. Ras, editors, Methodologies for Intelligent Systems, pages 642–651. Springer-Verlag, Berlin, 1993.
R. Slowinski, S. Greco, and B. Matarazzo. Mining decision-rule preference model from rough approximation of preference relation. In Proc. IEEE Annual Int. Conference on Computer Software & Applications (COMPSAC 2002), pages 1129–1134, Oxford, 2002.
R. Slowinski, S. Greco, and B. Matarazzo. Rough set analysis of preference-ordered data. In J.J. Alpigini, J.F. Peters, A. Skowron, and N. Zhong, editors, Rough Sets and Current Trends in Computing, pages 44–59, Berlin, 2002. Springer-Verlag.
R. Slowinski and D. Vanderpooten. Similarity relation as a basis for rough approximations. In P.P. Wang, editor, Advances in Machine Intelligence & Soft-Computing, vol.IV, pages 17–33. Duke University Press, Durham, NC, 1997.
R. Slowinski and D. Vanderpooten. A generalized definition of rough approximations based on similarity. IEEE Transactions on Data and Knowledge Engineering, 12:331–336, 2000.
J. Stefanowski. On rough set based approaches to induction of decision rules. In L. Polkowski and A. Skowron, editors, Rough Sets in Data Mining and Knowledge Discovery. Vol.1, pages 500–529. Physica-Verlag, Heidelberg, 1998.
M. Sugeno. Theory of fuzzy integrals and its applications. Doctoral thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.
R. Susmaga, R Slowinski, S. Greco, and B. Matarazzo. Generation of reducts and rules in multi-attribute and multi-criteria classification. Control and Cybernetics, 29:969–988, 2000.
W. Ziarko. Variable precision rough sets model. Journal of Computer and Systems Sciences, 1993:39–59, 1993.
W. Ziarko. Rough sets as a methodology for data mining. In L. Polkowski and A. Skowron, editors, Rough Sets in Knowledge Discovery. Vol. 1, pages 554–576. Physica-Verlag, Heidelberg, 1998.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science + Business Media, Inc.
About this chapter
Cite this chapter
Greco, S., Matarazzo, B., Słowinński, R. (2005). Decision Rule Approach. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-5_13
Download citation
DOI: https://doi.org/10.1007/0-387-23081-5_13
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-23067-2
Online ISBN: 978-0-387-23081-8
eBook Packages: Business and EconomicsBusiness and Management (R0)