Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tournament Selection, Iterated Coupon-Collection Problem, and Backward-Chaining Evolutionary Algorithms

  • Conference paper
Foundations of Genetic Algorithms (FOGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3469))

Included in the following conference series:

Abstract

Tournament selection performs tournaments by first sampling individuals uniformly at random from the population and then selecting the best of the sample for some genetic operation. This sampling process needs to be repeated many times when creating a new generation. However, even upon iteration, it may happen not to sample some of the individuals in the population. These individuals can therefore play no role in future generations. Under conditions of low selection pressure, the fraction of individuals not involved in any way in the selection process may be substantial. In this paper we investigate how we can model this process and we explore the possibility, methods and consequences of not generating and evaluating those individuals with the aim of increasing the efficiency of evolutionary algorithms based on tournament selection. In some conditions, considerable savings in terms of fitness evaluations are easily achievable, without altering in any way the expected behaviour of such algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bäck, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing (2000)

    Google Scholar 

  • Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 1995), San Francisco, California, pp. 9–16. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  • Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4(4), 361–394 (1997)

    Article  Google Scholar 

  • Davis, T.E., Principe, J.C.: A Markov chain framework for the simple genetic algorithm. Evolutionary Computation 1(3), 269–288 (1993)

    Article  Google Scholar 

  • De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov chains to analyze GAFOs. In: Darrell Whitley, L., Vose, M.D. (eds.) Proceedings of the Third Workshop on Foundations of Genetic Algorithms, July 31–August 2, pp. 115–138. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. John Wiley, Chichester (1971)

    MATH  Google Scholar 

  • Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  • Motoki, T.: Calculating the expected loss of diversity of selection schemes. Evolutionary Computation 10(4), 397–422 (2002)

    Article  Google Scholar 

  • Nix, A.E., Vose, M.D.: Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79–88 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Poli, R., Langdon, W.B.: Backward-chaining genetic programming (2005)

    Google Scholar 

  • Poli, R., Rowe, J.E., McPhee, N.F.: Markov chain models for GP and variable-length GAs with homologous crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, California, USA, July 7-11, Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  • Rudolph, G.: Convergence analysis of canonical genetic algorithm. IEEE Transactions on Neural Networks 5(1), 96–101 (1994)

    Article  Google Scholar 

  • Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  • Teller, A., Andre, D.: Automatically choosing the number of fitness cases: The rational allocation of trials. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, July 13-16, pp. 321–328. Morgan Kaufmann, San Francisco (1997), http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/GR.ps

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poli, R. (2005). Tournament Selection, Iterated Coupon-Collection Problem, and Backward-Chaining Evolutionary Algorithms. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_8

Download citation

  • DOI: https://doi.org/10.1007/11513575_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27237-3

  • Online ISBN: 978-3-540-32035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics