Abstract
We consider the problem of designing succinct geometric data structures while maintaining efficient navigation operations. A data structure is said succinct if the asymptotic amount of space it uses matches the entropy of the class of structures represented.
For the case of planar triangulations with a boundary we propose a succinct representation of the combinatorial information that improves to 2.175 bits per triangle the asymptotic amount of space required and that supports the navigation between adjacent triangles in constant time (as well as other standard operations). For triangulations with m faces of a surface with genus g, our representation requires asymptotically an extra amount of 36(g - 1)lg m bits (which is negligible as long as g ≪ m/lg m).
This work has been supported by the French “ACI Masses de données” program, via the Geocomp project, http://www.lix.polytechnique.fr/ schaeffe/GeoComp/.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Castelli Aleardi, L., Devillers, O., Schaeffer, G.: Compact representation of triangulations. Technical report, RR-5433 INRIA (2004), available at http://www.inria.fr/rrrt/rr-5433.html
Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 3–26. Springer, Heidelberg (2005)
Blanford, D., Blelloch, G., Kash, I.: Compact representations of separable graphs. In: Proc. of the Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 342–351 (2003)
Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Comput. Geom. Theory Appl. 22, 5–19 (2002)
Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: SODA, pp. 506–515 (2001)
Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Automata, Laguages and Programming, pp. 118–129 (1998)
Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA, pp. 383–391 (1996)
Jacobson, G.: Space efficients static trees and graphs. In: Proceedings of the IEEE Symposium on Foundations of Computerb Science (FOCS), pp. 549–554 (1989)
Kallmann, M., Thalmann, D.: Star-vertices: a compact representation for planar meshes with adjacency information. Journal of Graphics Tools 6, 7–18 (2002)
Munro, J.I., Raman, V.: Succint representation of balanced parantheses and static trees. SIAM J. on Computing 31, 762–776 (2001)
Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succintly. In: SODA, pp. 529–536 (2001)
Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1080–1094. Springer, Heidelberg (2003)
Raman, R., Raman, V., Rao, S.S.: Succint indexable dictionaries with application to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)
Raman, V., Rao, S.S.: Static dictionaries supporting rank. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 18–26. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aleardi, L.C., Devillers, O., Schaeffer, G. (2005). Succinct Representation of Triangulations with a Boundary. In: Dehne, F., López-Ortiz, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2005. Lecture Notes in Computer Science, vol 3608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11534273_13
Download citation
DOI: https://doi.org/10.1007/11534273_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28101-6
Online ISBN: 978-3-540-31711-1
eBook Packages: Computer ScienceComputer Science (R0)