Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Approach for Dynamic Split Strategies in Constraint Solving

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

Abstract

In constraint programming, a priori choices statically determine strategies that are crucial for resolution performances. However, the effect of strategies is generally unpredictable. We propose to dynamically change strategies showing bad performances. When this is not enough to improve resolution, we introduce some meta-backtracks. Our goal is to get good performances without the know-how of experts. Some first experimental results show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Beck, J.C., Prosser, P., Wallace, R.: Variable Ordering Heuristics Show Promise. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 711–715. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Borrett, J., Tsang, E., Walsh, N.: Adaptive constraint satisfaction. In: 15th UK Planning and Scheduling Special Interest Group Workshop, Liverpool (1996)

    Google Scholar 

  4. Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The quickest first principle. In: Proceedings of 12th European Conference on Artificial Intelligence, ECAI 1996, pp. 160–164. John Wiley and Sons, Chichester (1996)

    Google Scholar 

  5. Bruynooghe, M.: Intelligent Backtracking Revisited. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic, Essays in Honor of Alan Robinson. MIT Press, Cambridge (1991)

    Google Scholar 

  6. Carchrae, T., Beck, J.C.: Low-Knowledge Algorithm Control. In: Proceedings of the National Conference on Artificial Intelligence, AAAI 2004, pp. 49–54 (2004)

    Google Scholar 

  7. Caseau, Y., Laburthe, F.: Improved clp scheduling with task intervals. In: Proceedings of the International Conference on Logic Programming, ICLP 1994, pp. 369–383. MIT Press, Cambridge (1994)

    Google Scholar 

  8. El Sakkout, H., Wallace, M., Richards, B.: An instance of adaptive constraint propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178. Springer, Heidelberg (1996)

    Google Scholar 

  9. Flener, P., Hnich, B., Kiziltan, Z.: A meta-heuristic for subset problems. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 274–287. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Gebruers, C., Guerri, A., Hnich, B., Milano, M.: Making choices using structure at the instance level within a case based reasoning framework. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 380–386. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of AAAI 1998, Madison, Wisconsin, pp. 431–437 (1998)

    Google Scholar 

  12. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Boosting combinatorial search through randomization. In: Proceedings of AAAI 2002, pp. 674–682 (2002)

    Google Scholar 

  13. Kumar, V.: Algorithms for Constraint-Satisfaction Problems: A Survey. Artificial Intelligence Magazine 13(1), 32–44 (Spring 1992)

    Google Scholar 

  14. Mackworth, A.K.: Consistency in Networks of Relations. AI 8, 99–118 (1977)

    MATH  Google Scholar 

  15. Monfroy, E., Castro, C.: A Component Language for Hybrid Solver Cooperations. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 192–202. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Monfroy, E., Saubion, F., Lambert, T.: On hybridization of local search and constraint propagation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 299–313. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 619–633. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castro, C., Monfroy, E., Figueroa, C., Meneses, R. (2005). An Approach for Dynamic Split Strategies in Constraint Solving. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_17

Download citation

  • DOI: https://doi.org/10.1007/11579427_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics