Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Population Structure and Artificial Evolution

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

We investigate the effect that population structure has upon the course of artificial evolution. We represent an arbitrary population structure by embedding a population of individuals in a graph. Each individual resides at a vertex of the graph and can only choose a mating partner from among its neighbors in the graph. Each individual mates with the selected partner and is replaced by the resultant offspring in the next generation. We embed populations in a variety of trees and mesh-structured graphs and observe differences in rates of change of average fitness and percent polymorphism over successive generations. Results indicate that populations embedded in sparse random graphs having relatively low diameter yield results similar to those embedded in complete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Review of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Jong, K.A., Sarma, J.: On decentralizing selection algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 1995), pp. 17–23. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  3. Farley, A.M.: Minimal broadcast graphs. Networks 9, 313–332 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Giacobini, M., Alba, E., Tomassini, M.: Selection intensity in asynchronous cellular evolutionary algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, Springer, Heidelberg (2003)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Cambridge (1989)

    MATH  Google Scholar 

  6. Hedrick, P.W.: Genetics of Populations. Jones and Bartlett, Sudbury,MA (2000)

    Google Scholar 

  7. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  8. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, Ma. (1996)

    MATH  Google Scholar 

  9. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, MIT Press, Cambridge, MA (1992)

    Google Scholar 

  10. Maynard Smith, J.: The Theory of Evolution, 3rd edn. Cambridge Univ. Press, New York (1993)

    Google Scholar 

  11. Maynard Smith, J.: Evolutionary Genetics, 2nd edn. Oxford University Press, New York (1998)

    Google Scholar 

  12. Proskurowski, A.: Minimum broadcast trees. IEEE Transactions on Computers 5, 363–366 (1981)

    Article  Google Scholar 

  13. Sarma, J., De Jong, K.A.: An analysis of local selection algorithms in a spatially structured evolutionary algorithm. In: Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA 1997), pp. 181–187. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  14. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA (1999)

    MATH  Google Scholar 

  15. Watts, D.: Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton Univ. Press, Princeton (1999)

    MATH  Google Scholar 

  16. Watts, D., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  17. Whitley, D., Rana, S., Heckendorn, R.: Exploiting separability in search: The island model genetic algorithm. Journal of Computing and Information Technology 7, 33–47 (1999)

    Google Scholar 

  18. Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farley, A.M. (2006). Population Structure and Artificial Evolution. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_19

Download citation

  • DOI: https://doi.org/10.1007/11740698_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics