Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On-Line, Incremental Learning of a Robust Active Shape Model

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

Active Shape Models are commonly used to recognize and locate different aspects of known rigid objects. However, they require an off-line learning stage, such that the extension of an existing model requires a complete new re-training phase. Furthermore, learning is based on principal component analysis and requires perfect training data that is not corrupted by partial occlusions or imperfect segmentation. The contribution of this paper is twofold: First, we present a novel robust Active Shape Model that can handle corrupted shape data. Second, this model can be created on-line through the use of a robust incremental PCA algorithm. Thus, an already partially learned Active Shape Model can be used for segmentation of a new image in a level set framework and the result of this segmentation process can be used for an on-line update of the robust model. Our experimental results demonstrate the robustness and the flexibility of this new model, which is at the same time computationally much more efficient than previous ASMs using batch or iterated batch PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. In: Proc. European Conf. on Computer Vision, pp. 329–342 (1996)

    Google Scholar 

  2. Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Brox, T., Weickert, J.: Level set based image segmentation with multiple regions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 415–423. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Cootes, T.F., Cooper, D.H., Taylor, C.J., Graham, J.: A trainable method of parametric shape description, pp. 289–294 (1992)

    Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Gaham, J.: Active shape models - their training and application  61(1), 38–59 (1995)

    Google Scholar 

  6. Cremers, D., Sochen, N., Schnoerr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Proc. of Scale-Space, pp. 388–400 (2003)

    Google Scholar 

  7. de la Torre, F., Black, M.J.: Robust principal component analysis for computer vision. In: Proc. IEEE Intern. Conf. on Computer Vision, vol. I, pp. 362–369 (2001)

    Google Scholar 

  8. Fussenegger, M., Deriche, R., Pinz, A.: A multiphase level set based segmentation framework with pose invariant shape priors. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 395–404. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Hall, P., Marshall, D., Martin, R.: Incremental eigenanalysis for classification. In: Proc. British Machine Vision Conf., vol. I, pp. 286–295 (1998)

    Google Scholar 

  10. Hall, P., Marshall, D., Martin, R.: Merging and splitting eigenspace models. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(9), 1042–1049 (2000)

    Article  Google Scholar 

  11. Hotelling, H.: Analysis of a complex of statistical variables with principal components. Journal of Educational Psychology 24, 417–441 (1933)

    Article  Google Scholar 

  12. Leonardis, A., Bischof, H.: Robust recognition using eigenimages. Computer Vision and Image Understanding 78(1), 99–118 (2000)

    Article  Google Scholar 

  13. Li, Y.: On incremental and robust subspace learning. Pattern Recognition 37(7), 1509–1518 (2004)

    Article  MATH  Google Scholar 

  14. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature depend speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rao, R.: Dynamic appearance-based recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 540–546 (1997)

    Google Scholar 

  16. Rousson, M., Paragios, N.: Shape Priors for Level Set Representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Roweis, S.: EM algorithms for PCA and SPCA. In: Proc. Conf. on Neural Information Processing Systems, pp. 626–632 (1997)

    Google Scholar 

  18. Skočaj, D., Bischof, H., Leonardis, A.: A robust PCA algorithm for building representations from panoramic images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 761–775. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Skočaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: Proc. IEEE Intern. Conf. on Computer Vision, vol. II, pp. 1494–1501 (2003)

    Google Scholar 

  20. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society B 61, 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. on Neural Networks 6(1), 131–143 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fussenegger, M., Roth, P.M., Bischof, H., Pinz, A. (2006). On-Line, Incremental Learning of a Robust Active Shape Model. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_13

Download citation

  • DOI: https://doi.org/10.1007/11861898_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics