Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Image Watermark Decoding

  • Conference paper
Advances in Multimedia Information Processing - PCM 2006 (PCM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4261))

Included in the following conference series:

  • 782 Accesses

Abstract

Not much has been done in utilizing the available information at the decoder to optimize the decoding performance of watermarking systems. This paper focuses on analyzing different decoding methods, namely, Minimum Distance, Maximum Likelihood and Maximum a-posteriori decoding given varying information at the decoder in the blind detection context. Specifically, we propose to employ Markov random fields to model the prior information given the embedded message is a structured logo. The application of these decoding methods in Quantization Index Modulation systems shows that the decoding performance can be improved by Maximum Likelihood decoding that exploits the property of the attack and Maximum a-posteriori decoding that utilizes the modeled prior information in addition to the property of the attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cox, I.J., Miller, M., Bloom, J.: Digital watermarking. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. Cox, I.J., Miller, M.L., McKellips, A.: Watermarking as communications with side information. Proceedings of the IEEE 87(7), 1127–1141 (1999)

    Article  Google Scholar 

  3. Chen, B.: Design and analysis of digital watermarking, information embedding, and data hiding systems, MIT, PhD. Dissertation, Cambridge, MA (2000)

    Google Scholar 

  4. Licks, V., Jordan, R., González, P.: An exact expression for the bit error probability in angle qim watermarking under simultaneous amplitude scaling and AWGN attacks. In: ICASSP (2005)

    Google Scholar 

  5. Piper, A., Safavi-Naini, R., Mertins, A.: Resolution and quality scalable spread spectrum image watermarking. In: Proc. ACM Multi.& Sec. Workshop, New York (2005)

    Google Scholar 

  6. Lu, W., Li, W., Safavi-Naini, R., Ogunbona, P.: A new QIM-based image watermarking method and system. In: 2005 Asia-Pacific Workshop on Visual Information Processing, Hong Kong, pp. 160–164 (2005)

    Google Scholar 

  7. Gang, L., Akansu, A.N., Ramkumar, M.: Periodic signaling scheme in oblivious data hiding. In: Proc. ASILOMAR (34th), pp. 1851–1855 (2000)

    Google Scholar 

  8. Dubes, R.C., Jain, A.K.: Random field models in image analysis. Journal of Applied Statistics 16(2), 131–163 (1989)

    Article  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-6(6), 721–741 (1984)

    Article  Google Scholar 

  10. Besag, J.: On the Statistical Analysis of Dirty Pictures. J. R. Statist. Soc. B 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, W., Li, W., Safavi-Naini, R., Ogunbona, P. (2006). Optimal Image Watermark Decoding. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_17

Download citation

  • DOI: https://doi.org/10.1007/11922162_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48766-1

  • Online ISBN: 978-3-540-48769-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics