Abstract
Not much has been done in utilizing the available information at the decoder to optimize the decoding performance of watermarking systems. This paper focuses on analyzing different decoding methods, namely, Minimum Distance, Maximum Likelihood and Maximum a-posteriori decoding given varying information at the decoder in the blind detection context. Specifically, we propose to employ Markov random fields to model the prior information given the embedded message is a structured logo. The application of these decoding methods in Quantization Index Modulation systems shows that the decoding performance can be improved by Maximum Likelihood decoding that exploits the property of the attack and Maximum a-posteriori decoding that utilizes the modeled prior information in addition to the property of the attack.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cox, I.J., Miller, M., Bloom, J.: Digital watermarking. Morgan Kaufmann, San Francisco (2002)
Cox, I.J., Miller, M.L., McKellips, A.: Watermarking as communications with side information. Proceedings of the IEEE 87(7), 1127–1141 (1999)
Chen, B.: Design and analysis of digital watermarking, information embedding, and data hiding systems, MIT, PhD. Dissertation, Cambridge, MA (2000)
Licks, V., Jordan, R., González, P.: An exact expression for the bit error probability in angle qim watermarking under simultaneous amplitude scaling and AWGN attacks. In: ICASSP (2005)
Piper, A., Safavi-Naini, R., Mertins, A.: Resolution and quality scalable spread spectrum image watermarking. In: Proc. ACM Multi.& Sec. Workshop, New York (2005)
Lu, W., Li, W., Safavi-Naini, R., Ogunbona, P.: A new QIM-based image watermarking method and system. In: 2005 Asia-Pacific Workshop on Visual Information Processing, Hong Kong, pp. 160–164 (2005)
Gang, L., Akansu, A.N., Ramkumar, M.: Periodic signaling scheme in oblivious data hiding. In: Proc. ASILOMAR (34th), pp. 1851–1855 (2000)
Dubes, R.C., Jain, A.K.: Random field models in image analysis. Journal of Applied Statistics 16(2), 131–163 (1989)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-6(6), 721–741 (1984)
Besag, J.: On the Statistical Analysis of Dirty Pictures. J. R. Statist. Soc. B 48(3), 259–302 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, W., Li, W., Safavi-Naini, R., Ogunbona, P. (2006). Optimal Image Watermark Decoding. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_17
Download citation
DOI: https://doi.org/10.1007/11922162_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48766-1
Online ISBN: 978-3-540-48769-2
eBook Packages: Computer ScienceComputer Science (R0)