Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Euclidean Distance Transform of Digital Images in Arbitrary Dimensions

  • Conference paper
Advances in Multimedia Information Processing - PCM 2006 (PCM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4261))

Included in the following conference series:

  • 676 Accesses

Abstract

A new algorithm for Euclidean distance transform is proposed in this paper. It propagates from the boundary to the inner of object layer by layer, like the inverse propagation of water wave. It can be applied in every dimensional space and has linear time complexity. Euclidean distance transformations of digital images in 2-D and 3-D are conducted in the experiments. Voronoi diagram and Delaunay triangulation can also be produced by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ye, Q.Z.: The Signed Euclidean Distance Transform and Its Applications. In: Proc. ninth Int. Conf. Pattern Recognition, pp. 495–499 (1988)

    Google Scholar 

  2. Huang, C.T., Mitchell, O.R.: A Euclidean Distance Transform Using Grayscale Morphology Decomposition. IEEE Trans. Pattern Analysis and Machine Intelligence 16, 443–448 (1994)

    Article  Google Scholar 

  3. Shih, F.Y., Mitchell, O.R.: A Mathematical Morphology Approach to Euclidean Distance Transformation. IEEE Trans. Image Processing. 1, 197–204 (1992)

    Article  Google Scholar 

  4. Shih, F.Y., Liu, J.J.: Size-invariant Four-scan Euclidean Distance Transformation. Pattern Recognition 31, 1761–1766 (1998)

    Article  Google Scholar 

  5. Shih, F.Y., Wu, Y.T.: The Efficient Algorithms for Achieving Euclidean Distance Transformation. IEEE Trans. Image Processing. 13, 1078–1091 (2004)

    Article  MathSciNet  Google Scholar 

  6. Vincent, L.: Exact Euclidean Distance Function by Chain Propagations. In: IEEE Proc. Computer Vision and Pattern Recognition, pp. 520–525 (1991)

    Google Scholar 

  7. Cuisenaire, O., Macq, B.: Fast and Exact Signed Euclidean Distance Transformation with Linear Complexity. In: Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pp. 3293–3296 (1990)

    Google Scholar 

  8. Schouten, T., Broek, E.V.D.: Fast Exact Euclidean Distance (FEED) Transformation. In: Int. Conf. Pattern Recognition, pp. 594–597 (2004)

    Google Scholar 

  9. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear Time Euclidean Distance Transform Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 529–533 (1995)

    Article  Google Scholar 

  10. Guan, W.G., Ma, S.D.: A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 757–761 (1998)

    Article  Google Scholar 

  11. Maurer Jr., C.R., Qi, R.S., Raghavan, V.: A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 265–270 (2003)

    Article  Google Scholar 

  12. Ragnemalm, I.: The Euclidean Distance Transform in Arbitrary Dmensions. In: Int. Conf. Image Processing and its Applications, pp. 290–293 (1992)

    Google Scholar 

  13. Zhang, S., Karim, M.A.: Euclidean Distance Transform by Stack Filters. IEEE Signal Processing Letters 6, 253–256 (1999)

    Article  Google Scholar 

  14. Capson, D.W., Fung, A.C.: Connected Skeletons from 3D Distance Transforms. In: Southwest Symposium on Image Analysis and Interpretation, pp. 174–179 (1998)

    Google Scholar 

  15. Golland, P., Grimson, W.E.L.: Fixed Topology Skeletons. In: IEEE Proc. Computer Vision and Pattern Recognition, pp. 10–17 (2000)

    Google Scholar 

  16. Choi, W.P., Lam, K.M., Siu, W.C.: Extraction of the Euclidean Skeleton Based on a Connectivity Criterion. Pattern Recognition 36, 721–729 (2003)

    Article  MATH  Google Scholar 

  17. Shih, F.Y., Wu, Y.-T.: Three-dimensional Euclidean Distance Transformation and its Application to Shortest Path Planning. Pattern Recognition 37, 79–92 (2004)

    Article  MATH  Google Scholar 

  18. Leymarie, F., Levine, M.D.: Simulating the Grassfire Transform Using an Active Contour Model. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 56–75 (1992)

    Article  Google Scholar 

  19. Toriwaki, J., Mori, K.: Distance Transformation and Skeletonization of 3D Pictures and Their Applications to Medical Images. Digital and Image Geometry: Advanced Lectures, 412–429 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, D., Li, H. (2006). Euclidean Distance Transform of Digital Images in Arbitrary Dimensions. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_9

Download citation

  • DOI: https://doi.org/10.1007/11922162_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48766-1

  • Online ISBN: 978-3-540-48769-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics