Preview
Unable to display preview. Download preview PDF.
References
J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28 (1979), 643–647.
B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. Manuscript, 1988.
K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl. Combinatorial complexity bounds for arrangements. Manuscript, 1988.
K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput. Geom. 2 (1987), 195–222.
K. L. Clarkson. Applications of random sampling in computational geometry, II. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.
H. Edelsbrunner, L. J. Guibas, and M. Sharir. The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom., to appear.
H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many faces in arrangements of lines and of segments. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.
H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: a technique to cope with degenerate cases in geometric algorithms. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.
H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15 (1986), 341–363.
P. Erdös. On sets of distances of n points. Amer. Math. Monthly 53 (1946), 248–250.
P. Erdös. On sets of distances of n points in Euclidean space. Magyar Tud. Akad. Mat. Kutaló Int. Kozl. 5, (1960), 165–169.
B. Grünbaum. Convex Polytopes. John Wiley & Sons, London, England, 1967.
L. J. Guibas, M. H. Overmars, and M. Sharir. Intersections, connectivity, and related problems for arrangements of line segments. In preparation.
S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica 6 (1986), 151–177.
D. Haussler and E. Welzl. ɛ-nets and simplex range queries. Discrete Comput. Geom. 2 (1987), 127–151.
J. Pach and M. Sharir. The upper envelope on piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis. Discrete Comput. Geom., to appear.
R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of translations. Discrete Comput. Geom. 3 (1988), 123–136.
M. I. Shamos and D. Hoey. Geometric intersection problems. In “Proc. 17th Ann. ACM Sympos. Found. Comput. Sci. 1976”, 208–215.
J. Spencer, E. Szemerédi and W. T. Trotter, Jr. Unit distances in the Euclidean plane. In Graph Theory and Combinatorics, 293–303, Academic Press, London, 1984.
A. Wiernik and M. Sharir. Planar realization of nonlinear Davenport-Schinzel sequences by segments. Discrete Comput. Geom. 3 (1988), 15–47.
Th. Zaslavsky. Facing up to Arrangements: Face-count Formulas for Partitions of Space by Hyperplanes. Memoirs Amer. Math. Soc. 154, 1975.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Edelsbrunner, H. (1988). Geometric structures in computational geometry. In: Lepistö, T., Salomaa, A. (eds) Automata, Languages and Programming. ICALP 1988. Lecture Notes in Computer Science, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19488-6_117
Download citation
DOI: https://doi.org/10.1007/3-540-19488-6_117
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19488-0
Online ISBN: 978-3-540-39291-0
eBook Packages: Springer Book Archive