Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometric structures in computational geometry

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 317))

Included in the following conference series:

  • 203 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28 (1979), 643–647.

    Google Scholar 

  2. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. Manuscript, 1988.

    Google Scholar 

  3. K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl. Combinatorial complexity bounds for arrangements. Manuscript, 1988.

    Google Scholar 

  4. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput. Geom. 2 (1987), 195–222.

    Google Scholar 

  5. K. L. Clarkson. Applications of random sampling in computational geometry, II. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.

    Google Scholar 

  6. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.

    Google Scholar 

  7. H. Edelsbrunner, L. J. Guibas, and M. Sharir. The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom., to appear.

    Google Scholar 

  8. H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity of many faces in arrangements of lines and of segments. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.

    Google Scholar 

  9. H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: a technique to cope with degenerate cases in geometric algorithms. In “Proc. 4th Ann. ACM Sympos. Comput. Geom. 1988”, to appear.

    Google Scholar 

  10. H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15 (1986), 341–363.

    Google Scholar 

  11. P. Erdös. On sets of distances of n points. Amer. Math. Monthly 53 (1946), 248–250.

    Google Scholar 

  12. P. Erdös. On sets of distances of n points in Euclidean space. Magyar Tud. Akad. Mat. Kutaló Int. Kozl. 5, (1960), 165–169.

    Google Scholar 

  13. B. Grünbaum. Convex Polytopes. John Wiley & Sons, London, England, 1967.

    Google Scholar 

  14. L. J. Guibas, M. H. Overmars, and M. Sharir. Intersections, connectivity, and related problems for arrangements of line segments. In preparation.

    Google Scholar 

  15. S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. Combinatorica 6 (1986), 151–177.

    Google Scholar 

  16. D. Haussler and E. Welzl. ɛ-nets and simplex range queries. Discrete Comput. Geom. 2 (1987), 127–151.

    Google Scholar 

  17. J. Pach and M. Sharir. The upper envelope on piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis. Discrete Comput. Geom., to appear.

    Google Scholar 

  18. R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of translations. Discrete Comput. Geom. 3 (1988), 123–136.

    Google Scholar 

  19. M. I. Shamos and D. Hoey. Geometric intersection problems. In “Proc. 17th Ann. ACM Sympos. Found. Comput. Sci. 1976”, 208–215.

    Google Scholar 

  20. J. Spencer, E. Szemerédi and W. T. Trotter, Jr. Unit distances in the Euclidean plane. In Graph Theory and Combinatorics, 293–303, Academic Press, London, 1984.

    Google Scholar 

  21. A. Wiernik and M. Sharir. Planar realization of nonlinear Davenport-Schinzel sequences by segments. Discrete Comput. Geom. 3 (1988), 15–47.

    Google Scholar 

  22. Th. Zaslavsky. Facing up to Arrangements: Face-count Formulas for Partitions of Space by Hyperplanes. Memoirs Amer. Math. Soc. 154, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Timo Lepistö Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edelsbrunner, H. (1988). Geometric structures in computational geometry. In: Lepistö, T., Salomaa, A. (eds) Automata, Languages and Programming. ICALP 1988. Lecture Notes in Computer Science, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19488-6_117

Download citation

  • DOI: https://doi.org/10.1007/3-540-19488-6_117

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19488-0

  • Online ISBN: 978-3-540-39291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics