Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards machines that can think

  • Invited Papers
  • Conference paper
  • First Online:
SOFSEM'97: Theory and Practice of Informatics (SOFSEM 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1338))

  • 136 Accesses

Abstract

Recent progress in cognitive computing suggests that we might approach the point when the algorithmic principles of brain-like computing will be revealed and the study, design and realization of thinking machines will start to be an issue in computer science. For this purpose, we shall present a brief overview of related results from a machine oriented complexity theory.

This research was supported by GA ČM Grant No. 201/95/0976 “HypercompleX” and partly by INCO-Copernicus Contract IP961095 AZTEC-KIT

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbib, M. A.: Brains, Machines, and Mathematics. Second Edition. Springer Verlag, New York, 1987, 202 p.

    Google Scholar 

  2. Arbib, M. A. (Editor): The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge-Massachusetts, London, England, 1995, 1118 p.

    Google Scholar 

  3. de Bruijn, N.G.: Mathematical Models for the Living Brain. Address to the Royal Netherlands Academy of Sciences and Letters, Section of Science, Amsterdam, 21 December 1974, with a postscript, added March 1975

    Google Scholar 

  4. de Bruijn, N.G.: A Model of Information Processing in Human Memory and Consciousness. Nieuw Archief voor Wiskunde, Vierde serie Deel 12 No. 1–2 maart/juli 1994, pp. 35–48

    Google Scholar 

  5. de Bruijn, N.G.: Can People Think? Journal of Consciousness Studies, Vol. 3, No. 5/6, 1996, p.425–447

    Google Scholar 

  6. Churchland, P.S.-Sejnowski, T.J.: The Computational Brain. The MIT Press, Cambridge-Massachusetts, London, England, 1992, 544 p.

    Google Scholar 

  7. Goldschlager, L.G.: A Computational Theory of Higher Brain Function. Technical Report 233, April 1984, Basser Department of Computer Science, The University of Sydney, Australia, ISBN 0 909798 91 5

    Google Scholar 

  8. Hodges, A.: Alan Turing and Turing Machine. In: The Universal Turing Machine: A Half-Century Survey, R. Herken (ed.), Springer-Verlag Wien, New York, 1994, pp. 1–13

    Google Scholar 

  9. Indyk, P.: Optimal Simulation of Automata by Neural Nets. Proc. of the 12th Annual Symp. on Theoretical Aspects of Computer Science STACS'95, LNCS Vol. 900, pp. 337–348, 1995

    Google Scholar 

  10. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. NeuroCOLT Technical Report Series NC-TR-96-045, TU Graz, May 1996, 22 p.

    Google Scholar 

  11. Maass, W.-Orponen, P.: On the Effect of Analog Noise in Discrete-Time Analog Computing. Manuscript, 1996

    Google Scholar 

  12. Maass, W.-Ruf, B.: On Computation with Pulses. A manuscript, 1997

    Google Scholar 

  13. McCulloch, W. S.-Pitts, W. H.: A logical calculus of ideas immanent in nervous activity. Bull. of Math. Biophysics, 5:115, 1943

    Google Scholar 

  14. Parberry, Ian: Circuit Complexity and Neural Networks. The MIT Press, Cambridge, Massachusetts, London, England, 1994, 270 p., ISBN 0-262-16148-6

    Google Scholar 

  15. Siegelmann, H.T.: Recurrent Neural Networks. In: Computer Science Today — Recent Trends and Developments (J. van Leeuwen, ed.), LNCS Vol. 1000, Springer Verlag, Berlin, 1995, pp. 29–45

    Google Scholar 

  16. Siegelmann, H. T.-Sonntag, E.D.: Analog Computation via Neural Networks. Theoretical Computer Science, 131, 1994, pp. 331–360

    Google Scholar 

  17. Siegelmann, H. T.-Sonntag, E.D.: On Computational Power of Neural Networks. J. Comput. Syst. Sci., Vol. 50, No. 1, 1995, pp. 132–150

    Google Scholar 

  18. Šíma. J.-Wiedermann, J.: Neural Language Acceptors. In: Developments in Language Theory, Proc. of the Second International Conference, Magdeburg, June 1995, World Scientific Publishing Co.

    Google Scholar 

  19. Šíma, J.-Wiedermann, J.: Theory of Neuromata. ICS Technical Report 15/95, ICS AS CR Prague, submitted for publication

    Google Scholar 

  20. Turing, A.M.: Computing Machinery and Intelligence. Mind, Vol. 59, 1950, p. 433–460

    Google Scholar 

  21. Valiant, L.: Functionality in Neural Nets. Proc. 7th Nat. Conf. on Art. Intelligence, AAAI, Morgan Kaufmann, San Mateo, CA, 1988, pp. 629–634

    Google Scholar 

  22. Valiant, L.G.: Circuits of the Mind. Oxford University Press, New York, Oxford, 1994, 237 p., ISBN 0-19-508936-X

    Google Scholar 

  23. Valiant, L.G.: Rationality. In: Proc. 8th Ann. Conference on Computational Learning Theory COLT'95, Santa Cruz, California, ACM Press, 1995, p. 3–14

    Google Scholar 

  24. Valiant, L.G.: Cognitive Computation (Extended Abstract). Proc. 38th IEEE Symp. on Fond. of Comp. Sci., IEEE Press, 195, p. 2–3

    Google Scholar 

  25. Valiant, L.G.: A Neuroidal Architecture for Cognitive Computation. Harvard University, Cambridge, MA, TR-11-96, November 1996, 29 pp.

    Google Scholar 

  26. Wegner, P.: Tutorial Notes: Models and Paradigms of Interaction. See Peter Wegner's Home Page, 1995.

    Google Scholar 

  27. Wegner, P.: Why Interaction is More Powerful Than Algorithms. Communication of the ACM, Vol. 40, No. 5, May 1997, p. 80–91

    Google Scholar 

  28. Wiedermann, J.: Complexity Issues in Discrete Neurocomputing. Neural Network World, 4, 1994, pp. 99–119

    Google Scholar 

  29. Wiedermann, J.: Parallel Machine Models: How They Are and Where They Are Going. In: Proc. 22nd Seminar on Current Trends in Theory and Practice of Informatics SOFSEM'95, LNCS Vol. 1012, Springer Verlag, Berlin, 1995, pp. 1–30

    Google Scholar 

  30. Wiedermann, J.: The Cogitoid: A Computational Model of Mind. Technical Report No. V-685, Institute of Computer Science, September 1996, 17 pp.

    Google Scholar 

  31. Wiedermann, J.: Towards Algorithmic Explanation of Mind Evolution and Functioning. In preparation, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

František Plášil Keith G. Jeffery

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiedermann, J. (1997). Towards machines that can think. In: Plášil, F., Jeffery, K.G. (eds) SOFSEM'97: Theory and Practice of Informatics. SOFSEM 1997. Lecture Notes in Computer Science, vol 1338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63774-5_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-63774-5_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63774-5

  • Online ISBN: 978-3-540-69645-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics