Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter outlines several sparse reconstruction techniques analyzed throughout the book. More precisely, we present optimization methods, greedy methods, and thresholding-based methods. In each case, only intuition and basic facts about the algorithms are provided at this point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  2. E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351, (2007)

    Google Scholar 

  3. S. Chen, S. Billings, W. Luo, Orthogonal least squares methods and their application to nonlinear system identification. Intl. J. Contr. 50(5), 1873–1896 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Dai, O. Milenkovic, Subspace Pursuit for Compressive Sensing Signal Reconstruction. IEEE Trans. Inform. Theor. 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  6. G. Davis, S. Mallat, Z. Zhang, Adaptive time-frequency decompositions. Opt. Eng. 33(7), 2183–2191 (1994)

    Article  Google Scholar 

  7. D.L. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 106(45), 18914–18919 (2009)

    Article  Google Scholar 

  8. J. Friedman, W. Stuetzle, Projection pursuit regressions. J. Am. Stat. Soc. 76, 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  9. J. Högborn, Aperture synthesis with a non-regular distribution of interferometer baselines. Astronom. and Astrophys. 15, 417 (1974)

    Google Scholar 

  10. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  11. D. Needell, J. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008)

    Article  MathSciNet  Google Scholar 

  12. D. Needell, R. Vershynin, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (April 2010)

    Article  Google Scholar 

  14. J. Nocedal, S. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006)

    Google Scholar 

  15. Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. In 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Nov. 1–3, 1993., pp. 40–44, 1993

    Google Scholar 

  16. S. Qian, D. Chen, Signal representation using adaptive normalized Gaussian functions. Signal Process. 36(1), 1–11 (1994)

    Article  MATH  Google Scholar 

  17. V. Temlyakov, Nonlinear methods of approximation. Found. Comput. Math. 3(1), 33–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Temlyakov, Greedy approximation. Act. Num. 17, 235–409 (2008)

    MathSciNet  MATH  Google Scholar 

  19. V. Temlyakov, Greedy Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 20 (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  20. R. Tibshirani, Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  21. J.A. Tropp, Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theor. 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foucart, S., Rauhut, H. (2013). Basic Algorithms. In: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-4948-7_3

Download citation

Publish with us

Policies and ethics