With larger capacity, smaller feature size, and lower voltage operations of memory-rich CMOS LSIs (Fig. 1.1), various kinds of “errors (faults)” have been prominent and the repair techniques for them have become more important. The “errors” are categorized as hard/soft errors, timing/voltage margin errors, and speed-relevant errors. Hard/soft errors and timing/voltage margin errors, which occur in a chip, are prominent in a memory array because the array comprises memory cells having the smallest size and largest circuit count in the chip. In particular, coping with the margin errors is becoming increasingly important, and thus an emerging issue for low-voltage nanoscale LSIs, since the errors rapidly increase with device and voltage scaling. Increase in operating voltage is one of the best ways to tackle the issue. However, this approach is not acceptable due to intolerably increased power dissipation. Speed-relevant errors, which are prominent at a lower voltage operation, include speed-degradation errors of the chip itself and intolerably wide chip-to-chip speed-variation errors caused by the ever-larger interdie design-parameter variation. For the LSI industry in order to flourish and proliferate, solutions based on in-depth investigation of the errors are crucial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2–9, Jan. 1979.
K. Takeuchi, K. Shimohigashi, E. Takeda, E. Yamasaki, T. Toyabe and K. Itoh, “Alpha-particle-induced charge collection measurements for megabit DRAM cells,” IEEE Trans. Electron Devices, vol. 36, pp. 1644–1650, Sep. 1989.
J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein and C. W. Wahaus, “IBM experiments in soft fails in computer electronics (1978–1994),” IBM J. Res. Dev., vol. 40, pp. 3–18, Jan. 1996.
K. Osada, K. Yamaguchi, Y. Saitoh and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, pp. 827–833, May 2004.
E. Tammaru and J. B. Angell, “Redundancy for LSI yield enhancement,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 172–182, Dec. 1967.
A. Chen, “Redundancy in LSI memory array,” IEEE J. Solid-State Circuits, vol. SC-4, pp. 291–293, Oct. 1969.
K. Itoh, M. Horiguchi, and H. Tanaka, Ultra-low voltage nano-scale memories, Springer, New York, 2007.
R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic RAM,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 150–151.
R. R. DeSimone, N. M. Donofrio, B. L. Flur, R. H. Kruggel and H. H. Leung, “FET RAMs,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 154–155.
T. Mano, J. Yamada, J. Inoue and S. Nakajima, “Circuit techniques for a VLSI memory,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 463–470, Oct. 1983.
H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.
K. Arimoto, K. Fujishima, Y. Matsuda, M. Tsukude, T. Oishi, W. Wakamiya, S. Satoh, M. Yamada and T. Nakano, “A 60-ns 3.3-V-only 16-Mbit DRAM with multipurpose register,” IEEE J. Solid-State Circuits, vol. 24, pp. 1184–1190, Oct. 1989.
R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Proc. ESSCIRC, Sep. 2008, pp. 222–225.
M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, Oct. 1989.
M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2004, pp. 288–291.
Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron Devices, vol. 45, pp. 1453–1458, July 1998.
Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita and K. Ishibashi, “A soft-error hardened latch scheme for SoC in a 90nm technology and beyond,” Proc. CICC, Oct. 2004, pp. 329–332.
S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp. 792–804, Apr. 2006.
J. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik and V. De, “A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 282–283.
D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner and D. Blaauw, “A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 284–285.
Kelin J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS,” IEDM Proc., pp. 471–474, Dec. 2007.
Shih-Wei Sun and Paul G. Y. Tsui, “Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation,” IEEE J. Solid-State Circuits, vol. 30, pp. 947–949, Aug. 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Horiguchi, M., Itoh, K. (2011). An Introduction to Repair Techniques. In: Nanoscale Memory Repair. Integrated Circuits and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7958-2_1
Download citation
DOI: https://doi.org/10.1007/978-1-4419-7958-2_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-7957-5
Online ISBN: 978-1-4419-7958-2
eBook Packages: EngineeringEngineering (R0)