Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Introduction to Repair Techniques

  • Chapter
  • First Online:
Nanoscale Memory Repair

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 780 Accesses

With larger capacity, smaller feature size, and lower voltage operations of memory-rich CMOS LSIs (Fig. 1.1), various kinds of “errors (faults)” have been prominent and the repair techniques for them have become more important. The “errors” are categorized as hard/soft errors, timing/voltage margin errors, and speed-relevant errors. Hard/soft errors and timing/voltage margin errors, which occur in a chip, are prominent in a memory array because the array comprises memory cells having the smallest size and largest circuit count in the chip. In particular, coping with the margin errors is becoming increasingly important, and thus an emerging issue for low-voltage nanoscale LSIs, since the errors rapidly increase with device and voltage scaling. Increase in operating voltage is one of the best ways to tackle the issue. However, this approach is not acceptable due to intolerably increased power dissipation. Speed-relevant errors, which are prominent at a lower voltage operation, include speed-degradation errors of the chip itself and intolerably wide chip-to-chip speed-variation errors caused by the ever-larger interdie design-parameter variation. For the LSI industry in order to flourish and proliferate, solutions based on in-depth investigation of the errors are crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26, pp. 2–9, Jan. 1979.

    Article  Google Scholar 

  2. K. Takeuchi, K. Shimohigashi, E. Takeda, E. Yamasaki, T. Toyabe and K. Itoh, “Alpha-particle-induced charge collection measurements for megabit DRAM cells,” IEEE Trans. Electron Devices, vol. 36, pp. 1644–1650, Sep. 1989.

    Article  Google Scholar 

  3. J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein and C. W. Wahaus, “IBM experiments in soft fails in computer electronics (1978–1994),” IBM J. Res. Dev., vol. 40, pp. 3–18, Jan. 1996.

    Article  Google Scholar 

  4. K. Osada, K. Yamaguchi, Y. Saitoh and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, pp. 827–833, May 2004.

    Article  Google Scholar 

  5. E. Tammaru and J. B. Angell, “Redundancy for LSI yield enhancement,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 172–182, Dec. 1967.

    Article  Google Scholar 

  6. A. Chen, “Redundancy in LSI memory array,” IEEE J. Solid-State Circuits, vol. SC-4, pp. 291–293, Oct. 1969.

    Article  Google Scholar 

  7. K. Itoh, M. Horiguchi, and H. Tanaka, Ultra-low voltage nano-scale memories, Springer, New York, 2007.

    Google Scholar 

  8. R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk and G. M. Trout, “A fault-tolerant 64K dynamic RAM,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 150–151.

    Google Scholar 

  9. R. R. DeSimone, N. M. Donofrio, B. L. Flur, R. H. Kruggel and H. H. Leung, “FET RAMs,” ISSCC Dig. Tech. Papers, Feb. 1979, pp. 154–155.

    Google Scholar 

  10. T. Mano, J. Yamada, J. Inoue and S. Nakajima, “Circuit techniques for a VLSI memory,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 463–470, Oct. 1983.

    Article  Google Scholar 

  11. H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.

    Article  Google Scholar 

  12. K. Arimoto, K. Fujishima, Y. Matsuda, M. Tsukude, T. Oishi, W. Wakamiya, S. Satoh, M. Yamada and T. Nakano, “A 60-ns 3.3-V-only 16-Mbit DRAM with multipurpose register,” IEEE J. Solid-State Circuits, vol. 24, pp. 1184–1190, Oct. 1989.

    Article  Google Scholar 

  13. R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Proc. ESSCIRC, Sep. 2008, pp. 222–225.

    Google Scholar 

  14. M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, Oct. 1989.

    Article  Google Scholar 

  15. M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2004, pp. 288–291.

    Google Scholar 

  16. Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron Devices, vol. 45, pp. 1453–1458, July 1998.

    Article  Google Scholar 

  17. Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita and K. Ishibashi, “A soft-error hardened latch scheme for SoC in a 90nm technology and beyond,” Proc. CICC, Oct. 2004, pp. 329–332.

    Google Scholar 

  18. S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp. 792–804, Apr. 2006.

    Article  Google Scholar 

  19. J. Tschanz, K. Bowman, S.-L. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik and V. De, “A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 282–283.

    Google Scholar 

  20. D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner and D. Blaauw, “A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 284–285.

    Google Scholar 

  21. Kelin J. Kuhn, “Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS,” IEDM Proc., pp. 471–474, Dec. 2007.

    Google Scholar 

  22. Shih-Wei Sun and Paul G. Y. Tsui, “Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation,” IEEE J. Solid-State Circuits, vol. 30, pp. 947–949, Aug. 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Horiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horiguchi, M., Itoh, K. (2011). An Introduction to Repair Techniques. In: Nanoscale Memory Repair. Integrated Circuits and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7958-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7958-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7957-5

  • Online ISBN: 978-1-4419-7958-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics