Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Computer Communications and Networks ((CCN))

  • 2188 Accesses

Abstract

A matching M of a graph G(V,E) is a subset of its edges such that no two edges in M have common endpoints. Matching is a fundamental problem in graph theory, and although there are many sequential algorithms for matching, the distributed algorithms have begun to receive attention recently due to many applications of matchings in distributed systems such as mobile and sensor networks. Matching algorithms in distributed systems may also be the building blocks for other algorithms or protocols. In this chapter, we describe sample distributed algorithms for matching in graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avis D (1983) A survey of heuristics for the weighted matching problem. Networks 13:475–493

    Article  MathSciNet  MATH  Google Scholar 

  2. Czygrinow A, Hanckowiak M, Szymanska E (2004) A fast distributed algorithm for approximating the maximum matching. In: Proc 12th ann European symp on algorithms (ESA), pp 252–263

    Google Scholar 

  3. Edmonds J (1965) Path, trees, and flowers. Can J Math 17:449–467

    Article  MathSciNet  MATH  Google Scholar 

  4. Goddard W, Hedetniemi ST, Jacobs DP, Srimani PK (2003) Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: Proc international parallel and distributed processing symposium

    Google Scholar 

  5. Goldberg A, Plotkin SA (1987) Parallel (Δ+1) coloring of constant-degree graphs. Inf Process Lett 4:241–245

    Article  MathSciNet  Google Scholar 

  6. Hedetniemi ST, Jacobs DP, Srimani PK (2001) Maximal matching stabilizes in time O(m). Inf Process Lett 80:221–223

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirvonen J, Suomela J (2012) Distributed maximal matching: greedy is optimal. In: Kowalski D, Panconesi A (eds) PODC’12. Proc 2012 ACM symposium on principles of distributed computing, Madeira, Portugal, 16–18 July 2012

    Google Scholar 

  8. Hoepman J-H (2004) Simple distributed weighted matchings. Technical report, Nijmegen Institute for Computing and Information Sciences (NIII)

    Google Scholar 

  9. Hsu S-C, Huang S-T (1992) A self-stabilizing algorithm for maximal matching. Inf Process Lett 43:77–81

    Article  MathSciNet  MATH  Google Scholar 

  10. Israeli A, Itai A (1986) A fast and simple randomized parallel algorithm for maximal matching. Inf Process Lett 22(2):77–80

    Article  MathSciNet  Google Scholar 

  11. Kuhn F, Moscibroda T, Wattenhofer R (2005) The price of being near-sighted. In: Proc 17th annual ACM-SIAM symposium on discrete algorithms (SODA), pp 980–989

    Google Scholar 

  12. Lotker Z, Patt-Shamir B, Pettie S (2008) Improved distributed approximate matching. In: Proc SPAA 2008, pp 129–136

    Google Scholar 

  13. Manne F, Mjelde M, Pilard L, Tixeuil S (2007) A new self-stabilizing maximal matching algorithm. In: Proc 14th international colloquium on structural information and communication complexity, pp 96–108

    Chapter  Google Scholar 

  14. Panconesi A, Rizzi R (2001) Some simple distributed algorithms for sparse networks. Distrib Comput 14:97–100

    Article  Google Scholar 

  15. Preis R (1999) Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In: Meinel C, Tison S (eds) 16th STACS, Trier, Germany, 1999. LNCS, vol 1563. Springer, Berlin, pp 259–269

    Chapter  Google Scholar 

  16. Tel G (1994) Maximal matching stabilizes in quadratic time. Inf Process Lett 49(6):271–272

    Article  MathSciNet  MATH  Google Scholar 

  17. Uehara R, Chen Z (2000) Parallel approximation algorithms for maximum weighted matching in general graphs. Inf Process Lett 76:13–17

    Article  MathSciNet  Google Scholar 

  18. Wattenhofer M, Wattenhofer R (2004) Distributed weighted matching. In: Guerraoui R (ed) 18th DISC, Amsterdam, The Netherlands, 2004. LNCS, vol 3274. Springer, Berlin, pp 335–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Erciyes, K. (2013). Matching. In: Distributed Graph Algorithms for Computer Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-5173-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5173-9_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5172-2

  • Online ISBN: 978-1-4471-5173-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics