Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Computer Communications and Networks ((CCN))

  • 2192 Accesses

Abstract

Vertex coloring is an assignment of colors to the vertices of a graph such that there are no two neighbor nodes having the same color. Vertex coloring has many applications such as task scheduling, register allocation, and channel frequency assignment. In this chapter, we investigate distributed vertex coloring algorithms for arbitrary graphs and trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appel K, Haken W (1977) Solution of the four color map problem. Sci Am 237(4):108–121

    Article  MathSciNet  Google Scholar 

  2. Barenboim L, Elkin M (2010) Deterministic distributed vertex coloring polylogarithmic time. In: Proc 29th annual ACM symposium on principles of distributed computing (PODC), Zurich, Switzerland. ACM, New York, pp 410–419

    Google Scholar 

  3. Bollobas B (1979) Graph theory. Springer, New York

    Book  MATH  Google Scholar 

  4. Ghosh S, Karaata MH (1993) A self-stabilizing algorithm for coloring planar graphs. Distrib Comput 7:55–59

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldberg AV, Plotkin SA, Shannon GE (1988) Parallel symmetrybreaking in sparse graphs. SIAM J Discrete Math 1(4):434–446

    Article  MathSciNet  MATH  Google Scholar 

  6. Grable D, Panconesi A (1997) Nearly optimal distributed edge-coloring in O(loglogn) rounds. Random Struct Algorithms 10(3):385–405

    Article  MathSciNet  MATH  Google Scholar 

  7. Hedetniemi ST, Jacobs DP, Srimani PK (2003) Linear time self-stabilizing colorings. Inf Process Lett 87:251–255

    Article  MathSciNet  MATH  Google Scholar 

  8. Johansson O (1999) Simple distributed Δ+1 coloring of graphs. Inf Process Lett 70(5):229–232

    Article  MathSciNet  MATH  Google Scholar 

  9. Karp RM (1991) Probabilistic recurrence relations. In: Proc 23rd annual ACM symposium on theory of computing (STOC 91), pp 190–197

    Google Scholar 

  10. Kuhn F (2009) Weak graph colorings. In: Proc 21st annual ACM symposium on parallelism in algorithms and architectures. ACM, New York, pp 138–144

    Google Scholar 

  11. Linial N (1992) Locality in distributed graph algorithms. SIAM J Comput 21(1):193–201

    Article  MathSciNet  MATH  Google Scholar 

  12. Luby M (1993) Removing randomness in parallel computation without a processor penalty. J Comput Syst Sci 47:250–286

    Article  MathSciNet  MATH  Google Scholar 

  13. Marathe V, Panconesi A, Risinger LD Jr (2000) An experimental study of a simple, distributed edge coloring algorithm. In: Proc SPAA 2000, pp 166–175

    Google Scholar 

  14. Panconesi A, Rizzi R (2001) Some simple distributed algorithms for sparse networks. Distrib Comput 14(2):97–100

    Article  Google Scholar 

  15. Peleg D (2000) Distributed computing: a locality-sensitive approach. SIAM, Philadelphia. ISBN: 0-89871-464-8

    Book  MATH  Google Scholar 

  16. Skiena SS (2008) The algorithm design manual, 2nd edn. Springer, Berlin. ISBN: 1-84800-069–978-1-84800-8. Chapter 16

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Erciyes, K. (2013). Vertex Coloring. In: Distributed Graph Algorithms for Computer Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-5173-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5173-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5172-2

  • Online ISBN: 978-1-4471-5173-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics