Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introduction to Quantum Walks

  • Chapter
  • First Online:
Quantum Walks and Search Algorithms

Part of the book series: Quantum Science and Technology ((QST))

  • 2294 Accesses

Abstract

Quantum walks play an important role in the development of quantum algorithms. Algorithms based on quantum walks generally use a technique called amplitude amplification, which was introduced in Grover’s algorithm. This technique differs from the ones used in algebraic algorithms, in which the Fourier transform plays the main role. However, it is possible to go beyond Grover’s algorithm in terms of efficiency. The best algorithm to solve the element distinctness problem is based on quantum walks. This problem consists in determining whether there are repeated elements in a set of elements. When Grover’s algorithm is used, the solution is less efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://qubit.lncc.br/qwalk

  2. 2.

    http://www.math.wvu.edu/~gould

  3. 3.

    http://cpc.cs.qub.ac.uk/summaries/AEAX_v1_0.html

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of 33th STOC, pp. 50–59. ACM, New York (2001)

    Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33th STOC, pp. 60–69. ACM, New York (2001)

    Google Scholar 

  4. Ambainis, A.: Quantum walk algorithm for element distinctness. In: FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22–31. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  5. Childs, A.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581–603 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quant. Informa. Process. 1(1), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  8. Cover, T.M., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  9. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968)

    Google Scholar 

  11. Gould, H.W.: Combinatorial Identities. Morgantown Printing and Binding Co., Morgantown (1972)

    MATH  Google Scholar 

  12. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley Professional, Reading (1994)

    MATH  Google Scholar 

  13. Hughes, B.D.: Random Walks and Random Environments: Random Walks (Vol 1). Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  14. Hughes, B.D.: Random Walks and Random Environments: Random Environments (Vol 2). Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  15. Kempe, J.: Quantum random walks – an introductory overview. Contemp. Phys. 44(4), 302–327 (2003) quant-ph/0303081.

    Google Scholar 

  16. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. Marquezino, F.L., Portugal, R.: The QWalk simulator of quantum walks. Comput. Phys. Commun. 179(5), 359–369 (2008), arXiv:0803.3459

    Google Scholar 

  18. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  19. Nayak, A., Vishwanath, A.: Quantum walk on a line. DIMACS Technical Report 2000-43, quant-ph/0010117 (2000)

    Google Scholar 

  20. Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Portugal, R. (2013). Introduction to Quantum Walks. In: Quantum Walks and Search Algorithms. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6336-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6336-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6335-1

  • Online ISBN: 978-1-4614-6336-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics