Abstract
This chapter discusses a few applications of deep learning networks in cytopathology. Specifically, the detection of malaria from slide images of blood smear and classification of leukaemia cell-lines are addressed. The chapter starts with relevant theory for traditional (deep) multi-layer neural networks with back-propagation, followed by motivation, theory and training in Convolutional Neural Networks (CNN), the trending deep-learning based classifier. The detection of malaria from blood smear slide images using CNN is addressed followed by a discussion on the transfer learning capability of CNN by taking the classification of leukaemia cell-lines: K562, MOLT & HL60 as an example. The transfer learning capability of CNN is of particular interest especially when there are only very limited number of training samples to come up with a stand alone deep CNN classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. Nayar, Cytopathology in Oncology (Springer, 2014), http://www.springer.com/medicine/oncology/book/978-3-642-38849-1
PathScope, PathscopeTM slide scanner; digipath inc. Pathology delivered digitally. http://www.digipath.biz/pr/PathScope.pdf. Accessed 7 Dec 2016
M. Rieseberg, C. Kasper, K.F. Reardon, T. Scheper, Flow cytometry in biotechnology. Appl. Microbiol. Biotechnol. 56(3–4), 350–360 (2001)
D.A. Basiji, W.E. Ortyn, L. Liang, V. Venkatachalam, P. Morrissey, Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27(3), 653–670 (2007), https://doi.org/10.1016/j.cll.2007.05.008
E. Schonbrun, S.S. Gorthi, D. Schaak, Microfabricated multiple field of view imaging flow cytometry. Lab Chip 12, 268–273 (2012). https://doi.org/10.1039/C1LC20843H
Amnis Corporation\(^{\textregistered }\) ISX - MKII Brochure (2016), https://www.amnis.com/documents/brochures/ISX-MKII20Brochure_Final_Web.pdf. Accessed 28 July 2016
L. Pantanowitz, P. Valenstein, A. Evans, K. Kaplan, J. Pfeifer, D. Wilbur, L. Collins, T. Colgan, Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2(1), 36–45 (2011). https://doi.org/10.4103/2153-3539.83746
M. Rojo, G. Garcia, C. Mateos, J. Garcia, M. Vicente, Critical comparison of 31 commercially available digital slide systems in pathology. Int. J. Surg. Pathol. 14(4), 285–305 (2006). https://doi.org/10.1177/1066896906292274
H. Irshad, A. Veillard, L. Roux, D. Racoceanu, Methods for nuclei detection, segmentation, and classification in digital histopathology: a review - 2014; current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014). https://doi.org/10.1109/RBME.2013.2295804
G. Deco, V.K. Jirsa, P.A. Robinson, M. Breakspear, K.J. Friston, The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4(8) (2008)
A. Pouliakis, E. Karakitsou, N. Margari, P. Bountris, M. Haritou, J. Panayiotides, D. Koutsouris, P. Karakitsos, Artificial neural networks as decision support tools in cytopathology: past, present, and future. Biomed. Eng. Comput. Biol. 7, 1–18 (2016). https://doi.org/10.4137/BECB.S31601
Z. Shi, L. He, Current status and future potential of neural networks used for medical image processing. J. Multimed. 6(3) (2011)
K. Rohan, Vanishing of gradients (2016), https://ayearofai.com/rohan-4-the-vanishing-gradient-problem-ec68f76ffb9b. accessed: 2017-04-10
H. Greenspan, B. van Ginneken, R.M. Summers, Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Tran. Med. Imaging 35(5), 1153–1159 (2016). https://doi.org/10.1109/TMI.2016.2553401
WHO, Basic malaria microscopy—Part I: Learner’s guide. World Health Organization (2010)
G. Gopakumar, M. Swetha, G.S. Siva, G.R.K.S. Subrahmanyam, Convolutional neural network-based malaria diagnosis from focus-stack of blood smear images acquired using custom-built slide scanner. J. Biophoton. (2017). https://doi.org/10.1002/jbio.201700003
V.K. Jagannadh, G. Gopakumar, G.R.K.S. Subrahmanyam, S.S. Gorthi, Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening. Med. Biol. Eng. Comput. 1–8 (2016). https://doi.org/10.1007/s11517-016-1549-y
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Neurocomputing: Foundations of Research. MIT Press, Cambridge, MA, USA, pp. 696–699, http://dl.acm.org/citation.cfm?id=65669.104451
G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989). https://doi.org/10.1007/BF02551274
K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991). https://doi.org/10.1016/0893-6080(91)90009-T
E.A. Buffalo, P. Fries, R. Landman, H. Liang, R. Desimone, A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. 107(1), 361–365 (2010). https://doi.org/10.1073/pnas.0907658106
W. Zhang, K. Itoh, J. Tanida, Y. Ichioka, Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt. 29(32), 4790–4797 (1990). https://doi.org/10.1364/AO.29.004790
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
L. Lu, Y. Zheng, G. Carneiro, L. Yang (eds.), Deep Learning and Convolutional Neural Networks for Medical Image Computing (Springer International Publishing, 2017)
P. Nguyen, T. Tran, N. Wickramasinghe, S. Venkatesh, \(mathtt {Deepr}\): a convolutional net for medical records. IEEE J. Biomed. Health Inform. 21(1), 22–30 (2017). https://doi.org/10.1109/JBHI.2016.2633963
H.C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, R.M. Summers, Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162
N. Tajbakhsh, J.Y. Shin, S.R. Gurudu, R.T. Hurst, C.B. Kendall, M.B. Gotway, J. Liang, Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016). https://doi.org/10.1109/TMI.2016.2535302
Q. Dou, H. Chen, L. Yu, J. Qin, P.A. Heng, Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2017). https://doi.org/10.1109/TBME.2016.2613502
L. Yu, H. Chen, Q. Dou, J. Qin, P.A. Heng, Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Inform. 21(1), 65–75 (2017). https://doi.org/10.1109/JBHI.2016.2637004
H. Chen, L. Wu, Q. Dou, J. Qin, S. Li, J.Z. Cheng, D. Ni, P.A. Heng, Ultrasound standard plane detection using a composite neural network framework. IEEE Trans. Cybern. 47(6), 1576–1586 (2017). https://doi.org/10.1109/TCYB.2017.2685080
L. Zhang, L. Lu, I. Nogues, R.M. Summers, S. Liu, J. Yao, Deeppap: deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inform. 21(6), 1633–1643 (2017a). https://doi.org/10.1109/JBHI.2017.2705583
J.T. Kwak, S.M. Hewitt, Nuclear architecture analysis of prostate cancer via convolutional neural networks. IEEE Access 5, 18,526–18,533 (2017). https://doi.org/10.1109/ACCESS.2017.2747838
R. Zhang, Y. Zheng, T.W.C. Mak, R. Yu, S.H. Wong, J.Y.W. Lau, C.C.Y. Poon, Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 21(1), 41–47 (2017b). https://doi.org/10.1109/JBHI.2016.2635662
S. Christodoulidis, M. Anthimopoulos, L. Ebner, A. Christe, S. Mougiakakou, Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J. Biomed. Health Inform. 21(1), 76–84 (2017)
H. Chen, D. Ni, J. Qin, S. Li, X. Yang, T. Wang, P.A. Heng, Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19(5), 1627–1636 (2015). https://doi.org/10.1109/JBHI.2015.2425041
S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, N. Navab, Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016). https://doi.org/10.1109/TMI.2016.2528120
S. Sathpathi, A.K. Mohanty, P. Satpathi, S.K. Mishra, P.K. Behera, G. Patel, A.M. Dondorp, Comparing Leishman and Giemsa staining for the assessment of peripheral blood smear preparations in a malaria-endemic region in india. Malar. J. 13(1), 1–5 (2014). https://doi.org/10.1186/1475-2875-13-512
M. Elter, E. HaBlmeyer, T. ZerfaB, Detection of malaria parasites in thick blood films, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5140–5144 (2011). https://doi.org/10.1109/IEMBS.2011.6091273
A. Pinkaew, T. Limpiti, A. Trirat, Automated classification of malaria parasite species on thick blood film using support vector machine, in 2015 8th Biomedical Engineering International Conference (BMEiCON), pp. 1–5 (2015). https://doi.org/10.1109/BMEiCON.2015.7399524
I.K.E. Purnama, F.Z. Rahmanti, M.H. Purnomo, Malaria parasite identification on thick blood film using genetic programming, in 2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), pp. 194–198 (2013). https://doi.org/10.1109/ICICI-BME.2013.6698491
V.V. Makkapati, R.M. Rao, Segmentation of malaria parasites in peripheral blood smear images, in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1361–1364 (2009). https://doi.org/10.1109/ICASSP.2009.4959845
A. Mehrjou, T. Abbasian, M. Izadi, Automatic malaria diagnosis system, in 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 205–211 (2013). https://doi.org/10.1109/ICRoM.2013.6510106
Y. Purwar, S.L. Shah, G. Clarke, A. Almugairi, A. Muehlenbachs, Automated and unsupervised detection of malarial parasites in microscopic images. Malar. J. 10(1), 364 (2011). https://doi.org/10.1186/1475-2875-10-364
A. Ravendran, K.W.T.R.T. de Silva, R. Senanayake, Moment invariant features for automatic identification of critical malaria parasites, in 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), pp. 474–479 (2015). https://doi.org/10.1109/ICIINFS.2015.7399058
F.B. Tek, A.G. Dempster, I. Kale, Computer vision for microscopy diagnosis of malaria. Malar. J. 8(1), 153 (2009). https://doi.org/10.1186/1475-2875-8-153
W. Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong, Automated detection of plasmodium falciparum from Giemsa-stained thin blood films, in 2016 8th International Conference on Knowledge and Smart Technology (KST), pp. 215–218 (2016). https://doi.org/10.1109/KST.2016.7440501
S.S. Savkare, S.P. Narote, Automated system for malaria parasite identification, in 2015 International Conference on Communication, Information Computing Technology (ICCICT), pp. 1–4 (2015). https://doi.org/10.1109/ICCICT.2015.7045660
B.E. Boser, I.M. Guyon , V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, New York, NY, USA, COLT ’92, pp. 144–152 (1992), https://doi.org/10.1145/130385.130401
Z. Liang, A. Powell, I. Ersoy, M. Poostchi, K. Silamut, K. Palaniappan, P. Guo, M.A. Hossain, A. Sameer, R.J. Maude, J.X. Huang, S. Jaeger, G. Thoma, CNN-based image analysis for malaria diagnosis, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 493–496. https://doi.org/10.1109/BIBM.2016.7822567
N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
G. Gopakumar, V.K. Jagannadh, S.S. Gorthi, G.R.K.S. Subrahmanyam, Framework for morphometric classification of cells in imaging flow cytometry. J. Microsc. 261(3), 307–319 (2016). https://doi.org/10.1111/jmi.12335
A. Vedaldi, K. Lenc, Matconvnet—convolutional neural networks for MATLAB. CoRR abs/1412.4564. http://arxiv.org/abs/1412.4564
N. Linder, R. Turkki, M. Walliander, A. Mårtensson, V. Diwan, E. Rahtu, M. Pietikäinen, M. Lundin, A malaria diagnostic tool based on computer vision screening and visualization of plasmodium falciparum candidate areas in digitized blood smears. PLoS ONE 9(8), e104,855 (2014)
LBP/VAR implementation; centre for machine vision and signal analysis. University of Oulu (2016), http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab. Accessed 15 Oct 2016
T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623
D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
B.W. Stewart, C. Wild, World Cancer Report 2014 (World Health Organization, 2014)
W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye, S. Ji, Deep model based transfer and multi-task learning for biological image analysis, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’15, pp. 1475–1484 (2015). https://doi.org/10.1145/2783258.2783304
T. Zeng, R. Li, R. Mukkamala, J. Ye, S. Ji, Deep convolutional neural networks for annotating gene expression patterns in the mouse brain. BMC Bioinform. 16(1), 1–10 (2015). https://doi.org/10.1186/s12859-015-0553-9
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification. ArXiv e-prints 1502, 01852 (2015)
K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional nets, in British Machine Vision Conference (2014)
J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)
I. Jolliffe, Principal Component Analysis. Springer Series in Statistics (Springer, 2002)
Y. Bar , I. Diamant , L. Wolf , S. Lieberman, E. Konen, H. Greenspan, Chest pathology detection using deep learning with non-medical training, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 294–297, https://doi.org/10.1109/ISBI.2015.7163871
E.J. Breen, R. Jones, Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996). https://doi.org/10.1006/cviu.1996.0066
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gopakumar, G., Sai Subrahmanyam, G.R.K. (2019). Deep Learning Applications to Cytopathology: A Study on the Detection of Malaria and on the Classification of Leukaemia Cell-Lines. In: Balas, V., Roy, S., Sharma, D., Samui, P. (eds) Handbook of Deep Learning Applications. Smart Innovation, Systems and Technologies, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-11479-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-11479-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11478-7
Online ISBN: 978-3-030-11479-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)