Abstract
Surrogate-assisted optimization was developed for handling complex and costly problems, which arise from real-world applications. The main idea behind surrogate-assisted optimization is to optimally exhaust the available information to lower the amount of required expensive function evaluations thus saving time, resources and the related costs. This chapter outlines the existing challenges in this field that include benchmarking, constraint handling, constructing ensembles of surrogates and solving discrete and/or multi-objective optimization problems. We discuss shortcomings of existing techniques, propose suggestions for improvements and give an outlook on promising research directions. This is valuable for practitioners and researchers alike, since the increased availability of computational resources on the one hand and the continuous development of new approaches on the other hand raise many intricate new problems in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See https://www.lorentzcenter.nl/lc/web/2016/764/info.php3?wsid=764 for SAMCO’s website and http://samco.gforge.inria.fr/doku.php for the list of libraries (both accessed on 30. 11. 2017).
References
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998)
Asadi, M., Goldak, J.: Combinatorial optimization of weld sequence by using a surrogate model to mitigate a weld distortion. Int. J. Mech. Mater. Des. 7(2), 123–139 (2011)
Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52(1), 337–361 (2004)
Bartz-Beielstein, T.: How to create generalizable results. In: Springer Handbook of Computational Intelligence, pp. 1127–1142. Springer, Berlin (2015)
Bartz-Beielstein, T.: Stacked generalization of surrogate models - a practical approach. Technical Report 5/2016, TH Köln (2016)
Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. In: Metaheuristics, pp. 261–273 (2007)
Bartz-Beielstein, T., Friese, M., Zaefferer, M., Naujoks, B., Flasch, O., Konen, W., Koch, P.: Noisy optimization with sequential parameter optimization and optimal computational budget allocation. In: Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 119–120 (2011)
Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)
Beyer, H.G., Sendhoff, B.: Robust optimization-a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33), 3190–3218 (2007)
Bird, S., Li, X.: Improving local convergence in particle swarms by fitness approximation using regression. In: Computational Intelligence in Expensive Optimization Problems, pp. 265–293 (2010)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT92, pp. 144–152 (1992)
Branke, J., Kaußler, T., Smidt, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Evolutionary Design and Manufacture, pp. 299–307. Springer, Berlin (2000)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)
Brownlee, A.E., Wright, J.A.: Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Appl. Soft Comput. 33, 114–126 (2015)
Chen, C.h., Lee, L.H.: Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, vol. 1, World Scientific (2011)
Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Campana, E.F., Stern, F.: High-fidelity global optimization of shape design by dimensionality reduction, metamodels and deterministic particle swarm. Eng. Optim. 47(4), 473–494 (2015)
Coello Coello, C.A.: Constraint-handling techniques used with evolutionary algorithms. In: Companion Material Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 675–701 (2017)
Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, New Jersey (2004)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn, Springer, Berlin (2007)
Couckuyt, I., De Turck, F., Dhaene, T., Gorissen, D.: Automatic surrogate model type selection during the optimization of expensive black-box problems. In: Proceedings of the 2011 Winter Simulation Conference, WSC 2011, pp. 4269–4279 (2011)
Cressie, N.: Spatial prediction and ordinary kriging. Math. Geol. 20(4), 405–421 (1988)
Custódio, F.L., Barbosa, H.J., Dardenne, L.E.: Full-atom ab initio protein structure prediction with a genetic algorithm using a similarity-based surrogate model. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, 1–8 (2010)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2001)
Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)
Filipiak, P., Michalak, K., Lipinski, P.: Infeasibility driven evolutionary algorithm with arima-based prediction mechanism. Intell. Data Eng. Autom. Learn.-IDEAL 2011, 345–352 (2011)
Fischbach, A., Zaefferer, M., Stork, J., Friese, M., Bartz-Beielstein, T.: From real world data to test functions. In: Proceedings of the 26. Workshop Computational Intelligence, pp. 159–177 (2016)
Forrester, A., Keane, A.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)
Forrester, A., Sobester, A., Keane, A.: Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley (2008)
Friese, M., Bartz-Beielstein, T., Emmerich, M.: Building ensembles of surrogates by optimal convex combination. Bioinspired Optim. Methods Their Appl. BIOMA 2016, 131–143 (2016)
Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33(3), 199–216 (2006)
Gómez-Bombarelli, R., Duvenaud, D.K., Hernández-Lobato, J.M., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. arXiv:1610.02415 (2016)
Gramacy, R.B.: TGP: an R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. J. Stat. Softw. 19(9), 1–46 (2007)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)
Haftka, R.T., Villanueva, D., Chaudhuri, A.: Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct. Multidiscip. Optim. 54(1), 3–13 (2016)
Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. arXiv:1603.08785 (2016)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn, Springer, Berlin (2009)
Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol. Comput. 23(3), 343–367 (2015)
Ho, Y., Pepyne, D.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 115(3), 549–570 (2002)
Huang, E., Xu, J., Zhang, S., Chen, C.H.: Multi-fidelity model integration for engineering design. Procedia Comput. Sci. 44, 336–344 (2015)
Hussein, R., Deb, K.: A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 573–580 (2016)
Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)
Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)
Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)
Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the Twenty-Second International Conference on Machine Learning, ICML 2005, pp. 377–384 (2005)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)
Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Knowles, J., Nakayama, H.: Meta-modeling in multiobjective optimization. In: Multiobjective optimization, pp. 245–284. Springer, Berlin (2008)
Le, M.N., Ong, Y.S., Menzel, S., Jin, Y., Sendhoff, B.: Evolution by adapting surrogates. Evol. Comput. 21(2), 313–340 (2013)
Loshchilov, I., Schoenauer, M., Sebag, M.: Dominance-based Pareto-surrogate for multi-objective optimization. In: Proceedings of the 8th International Conference on Simulated Evolution and Learning, SEAL 2010, LNCS, vol. 6457, pp. 230–239 (2010)
Mezura-Montes, E., Coello Coello, C.A.: A survey of constraint-handling techniques based on evolutionary multiobjective optimization (2006)
Montgomery, D.C.: Design and Analysis of Experiments, 5th edn, Wiley (2001)
Müller, J., Shoemaker, C.A.: Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems. J. Glob. Optim. 60(2), 123–144 (2014)
Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press (2012)
Nelson, A., Alonso, J., Pulliam, T.: Multi-fidelity aerodynamic optimization using treed meta-models. In: Proceedings of the 25th AIAA Applied Aerodynamics Conference, pp. 1–19. American Institute of Aeronautics and Astronautics (2012)
Rao, S.V.N., Manju, S.: Optimal pumping locations of skimming wells. Hydrol. Sci. J. 52(2), 352–361 (2007)
Robinson, T., Eldred, M., Willcox, K., Haimes, R.: Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping. Aiaa J. 46(11), 2814–2822 (2008)
Romero, P.A., Krause, A., Arnold, F.H.: Navigating the protein fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. 110(3), E193–E201 (2013)
Sanchez, E., Pintos, S., Queipo, N.V.: Toward an optimal ensemble of kernel-based approximations with engineering applications. In: Proceedings of the 2006 IEEE International Joint Conference on Neural Network, pp. 2152–2158 (2006)
Shan, S., Wang, G.G.: Space exploration and global optimization for computationally intensive design problems: a rough set based approach. Struct. Multidiscip. Optim. 28(6), 427–441 (2004)
Shan, S., Wang, G.G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct. Multidiscip. Optim. 41(2), 219–241 (2010)
Shi, L., Rasheed, K.: A survey of fitness approximation methods applied in evolutionary algorithms. In: Computational Intelligence in Expensive Optimization Problems, pp. 3–28. Springer, Berlin (2010)
Simpson, T., Toropov, V., Balabanov, V., Viana, F.: Design and analysis of computer experiments in multidisciplinary design optimization: a review of how far we have come—or not. In: Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 1–22 (2012)
Singh, P., Couckuyt, I., Ferranti, F., Dhaene, T.: A constrained multi-objective surrogate-based optimization algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, pp. 3080–3087 (2014)
Smith, J., Stone, C., Serpell, M.: Exploiting diverse distance metrics for surrogate-based optimisation of ordering problems: A case study. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 701–708 (2016)
Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)
Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn, MIT Press (1998)
Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of the lost architecture: kernels for Bayesian optimization in conditional parameter spaces. arXiv:1409.4011 (2014)
Teixeira, C., Covas, J.A., Stützle, T., Gaspar-Cunha, A.: Multi-objective ant colony optimization for the twin-screw configuration problem. Eng. Optim. 44(3), 351–371 (2012)
Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for optimization of computationally expensive functions and its engineering applications. In: Success in Evolutionary Computation, pp. 43–72. Springer Berlin Heidelberg (2008)
Theiler, J., Galdrikian, B., Longtin, A., Eubank, S., Farmer, J.D.: Using surrogate data to detect nonlinearity in time series. Technical Report, Los Alamos National Laboratory, NM (United States) (1991)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodolgical) 58(1), 267–288 (1996)
Ursem, R.K.: Multinational gas: Multimodal optimization techniques in dynamic environments. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2000, pp. 19–26 (2000)
Vapnik, V.N., Chervonenkis, A.J.: Theory of Pattern Recognition. Nauka (1974)
Voutchkov, I., Keane, A., Bhaskar, A., Olsen, T.M.: Weld sequence optimization: the use of surrogate models for solving sequential combinatorial problems. Comput. Methods Appl. Mech. Eng. 194(30–33), 3535–3551 (2005)
Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal component analysis. In: A Practical Approach To Microarray Data Analysis, pp. 91–109. Springer, Berlin (2003)
Wang, H.: Forward regression for ultra-high dimensional variable screening. J. Am. Stat. Assoc. 104(488), 1512–1524 (2009)
Whitley, L.D., Mathias, K.E., Rana, S., Dzubera, J.: Building better test functions. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 239–246 (1995)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Zaefferer, M., Bartz-Beielstein, T.: Efficient global optimization with indefinite kernels. In: Proceedings of the 14th International Conference Parallel Problem Solving from Nature, PPSN XIV, pp. 69–79 (2016)
Zaefferer, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Simulation-based test functions for optimization algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 905–912 (2017)
Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 871–878 (2014)
Zerpa, L.E., Queipo, N.V., Pintos, S., Salager, J.L.: An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates. J. Pet. Sci. Eng. 47(3–4), 197–208 (2005)
Acknowledgements
This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement no. 692286. Tea Tušar acknowledges financial support from the Slovenian Research Agency (project no. Z2–8177).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Stork, J. et al. (2020). Open Issues in Surrogate-Assisted Optimization. In: Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, EG. (eds) High-Performance Simulation-Based Optimization. Studies in Computational Intelligence, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-18764-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-18764-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18763-7
Online ISBN: 978-3-030-18764-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)