Abstract
In the meantime of the rapidly growing of Linked Data, the quality of these datasets is yet a challenge. A close examination of the quality of this data could be very critical, especially if important researches or professional decisions depend on it. Nowadays, several Linked Data quality metrics have been proposed which cover numerous dimensions of Linked Data quality such as completeness, consistency, conciseness and interlinking. In this paper, we propose an approach to enhance the conciseness of linked datasets by discovering synonym predicates. This approach is based, in addition to a statistical analysis, on a deep semantic analysis of data and on learning algorithms. We argue that studying the meaning of predicates can help to improve the accuracy of results. A set of experiments are conducted on real-world datasets to evaluate the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Lyon is a French city.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Abedjan, Z., Naumann, F.: Context and target configurations for mining RDF data. In: Proceedings of the 1st International Workshop on Search and Mining Entity-Relationship Data, pp. 23–24. ACM (2011)
Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 140–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_10
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)
Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7_18
Fu, L., Wang, H., Jin, W., Yu, Y.: Towards better understanding and utilizing relations in DBpedia. Web Intell. Agent Syst. Int. J. 10(3), 291–303 (2012)
Fürber, C., Hepp, M.: SWIQA-a semantic web information quality assessment framework. In: ECIS, vol. 15, p. 19 (2011)
Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. Int. J. Very Large Data Bases 24(6), 707–730 (2015)
Gunaratna, K., Thirunarayan, K., Jain, P., Sheth, A., Wijeratne, S.: A statistical and schema independent approach to identify equivalent properties on linked data. In: Proceedings of the 9th International Conference on Semantic Systems, pp. 33–40. ACM (2013)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Kr 6, 57–67 (2006)
Issa, S., Paris, P., Hamdi, F., Cherfi, S.S.S.: Revealing the conceptual schemas of RDF datasets. In: 31st International Conference on Advanced Information Systems Engineering (CAiSE), Italy, pp. 1–15, June 2019
Issa, S., Paris, P.-H., Hamdi, F.: Assessing the completeness evolution of DBpedia: a case study. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 238–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70625-2_22
Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18(1), 1–31 (2003)
Lei, Y., Sabou, M., Lopez, V., Zhu, J., Uren, V., Motta, E.: An infrastructure for acquiring high quality semantic metadata. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 230–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_19
Lei, Y., Uren, V., Motta, E.: A framework for evaluating semantic metadata. In: Proceedings of the 4th International Conference on Knowledge Capture, pp. 135–142. ACM (2007)
Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 116–123. ACM (2012)
Mika, P.: Flink: semantic web technology for the extraction and analysis of social networks. Web Semant. Sci. Serv. Agents WWW 3(2), 211–223 (2005)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)
Salton, G.: Automatic text processing (1988)
Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endowment 5(3), 157–168 (2011)
Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 33–40. ACM (2012)
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)
Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: An unsupervised data-driven method to discover equivalent relations in large linked datasets. Semant. web 8(2), 197–223 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Issa, S., Hamdi, F., Cherfi, S.Ss. (2019). Enhancing the Conciseness of Linked Data by Discovering Synonym Predicates. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_65
Download citation
DOI: https://doi.org/10.1007/978-3-030-29551-6_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29550-9
Online ISBN: 978-3-030-29551-6
eBook Packages: Computer ScienceComputer Science (R0)