Abstract
We develop an online graphical and intuitive interface connected to a server aiming to facilitate access to professionals worldwide that face problems with bovine blastocysts classification. The interface Blasto3Q (3Q is referred to the three qualities of the blastocyst grading) contains a description of 24 variables that are extracted from the image of the blastocyst and analyzed by three Artificial Neural Networks (ANNs) that classifies the same loaded image. The same embryo (i.e., the biological specimen) was submitted to digital image capture by the control group (inverted microscope with 40x of magnification) and to experimental group (stereomicroscope with maximum of magnification plus 4x zoom from the cell phone). The 36 images obtained from control and experimental groups were uploaded on the Blasto3Q. Each image from both sources was evaluated for segmentation and submitted (only if it could be properly or partially segmented) to the quality grade classification by the three ANNs of the Blasto3Q program. In the group control, all the images were properly segmented, whereas 38.9% (07/18) and 61.1% (11/18) of the images from the experimental group, respectively could not be segmented or were partially segmented. The percentage of agreement was calculated when the same blastocyst was evaluated by the same ANN from the two sources (control and experimental groups). On the 54 potential evaluations of the three ANNs (i.e., 18 images been evaluated by the three networks) from the experimental group only 22.2% agreed with evaluations of the control (12/54). Of the remaining 42 disagreed evaluations from experimental group, 21 were unable to be performed and 21 were wrongly processed when compared with control evaluation.
V. B. Guilherme, M. Pronunciate and P. H. dos Santos—Authors contributed equally to the study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Instituto Brasileiro de Geografia e Estatística IBGE: Produção Pecuária Municipal 2016. IBGE 44, 14 (2016). E-book https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2016v44br.pdf
Instituto Brasileiro de Geografia e Estatística IBGE. Diretoria de Pesquisas – DPE: Coordenação de População e Indicadores Sociais - COPIS. Digital doc. 1 (2017). ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2017/estimativa_dou_2017.pdf
Ereno, D.: Marcadores da Fertilização: Novas técnicas mapeiam a função de proteínas, carboidratos e lipídeos para obtenção de embriões bovinos de melhor qualidade. Tecnologia Pecuária, Revista FAPESP. e-book, 62 (2015). http://revistapesquisa.fapesp.br/wp-content/uploads/2015/05/062-067_embriao-bovino_231.pdf
Mello, R.R.C.: In vitro embryo production in cattle. Rev. Bras. Reprod. Anim. 40(2), 58–64 (2016)
Hyttel, P., Sinowatz, F., Vejsted, M., et al.: Essential of Domestic Animal Embryology. Sauders/Elsevier, Edinburgh (2010)
Fair, T., Lonergan, P., Dinnyes, A., Cottel, D.C., Hyttel, P., et al.: Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol. Reprod. Dev. 58, 186–195 (2001). https://doi.org/10.1002/1098-2795(200102)58:2%3C186:AID-MRD8%3E3.0.CO;2-N
Rizos, D., Fair, T., Papadopoulos, S., Boland, M.P., Lonergan, P.: Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62, 320–327 (2002). https://doi.org/10.1002/mrd.10138
Holm, P., Callesen, H.: In vivo versus in vitro produced bovine ova: similarities and differences relevant for practical application. Reprod. Nutr. Dev. 38(6), 579–594 (1998)
Camargo, L.S.A., Viana, J.H.M., Sá, W.F., Ferreira, F.M., Ramos, A.A., et al.: Factors influencing in vitro embryo production. Anim. Reprod. 3(1), 19–28 (2006)
Crosier, A.E., Farin, P.W., Dykstra, M.J., Alexander, J.E., Farin, C.E.: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol. Reprod. 64, 1375–1385 (2001)
Dode, M.A.N., Leme, L.O., Sprícigo, L.F.W.: Cryopreservation of in vitro produced bovine embryos. Rev. Bras. Repro. Anim. 37(2), 145–150 (2013)
Bó, G., Mapletoft, R.: Evaluation and classification of bovine embryos. Anim. Reprod. 54, 344–348 (2013)
Lindner, G., Wright, R.W.J.: Bovine embryo morphology and avaluation. Theriogenology 20, 407–416 (1983). https://doi.org/10.1016/0093-691X(83)90201-7
Russ, J.C.: The Image Processing Handbook, 5th edn. CRC Press, Boca Raton (2008)
Bényei, B., Komlósi, I., Pécsi, A., Pollott, G., Marcos, C.H., et al.: The effect of internal and external factors on bovine embryo transfer results in a tropical environment. Anim. Reprod. Sci. 93, 268–279 (2006). https://doi.org/10.1016/j.anireprosci.2005.07.012
Farin, P.W., Britt, J.H., Shaw, D.W., Slenning, B.D.: Agreement among evaluators of bovine embryos produced in vivo or in vitro. Theriogenology 95, 339–349 (1995). https://doi.org/10.1016/0093-691X(95)00189-F
Manna, C., Nanni, L., Lumini, A., Pappalardo, S.: Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online 26, 42–49 (2013). https://doi.org/10.1016/j.rbmo.2012.09.015
Rocha, J.C., Passalia, F., Matos, F.D., Maserati Jr., M.P., Alves, M.F., et al.: Methods for assessing the quality of mammalian embryos: how far we are from the gold standard? JBRA Assist. Reprod. 20(3), 150–158 (2016). https://doi.org/10.5935/1518-0557.20160033
Hoshi, H.: In vitro production of bovine embryos and their application for embryo transfer. Thereogenology 59, 675–685 (2003). https://doi.org/10.1016/S0093-691X(02)01247-5
Held, E., Mertens, E.M., Mohammadi-Sangcheshmeh, A.M., Salilew-Wondim, D., Bessenfelder, U., et al.: Zona pellucida birefringence correlates with developmental capacity of bovine oocytes classified by maturational environment, COC morphology and G6PDH activity. Reprod. Fert. Dev. 24, 568–579 (2012). https://doi.org/10.1071/RD11112
López-Damiám, E.P., Galina, C.S., Merchant, H., Cedilo-Peláez, C., Aspron, M.: Assessment of Bos taurus embryos comparing stereoscopyc microscopy and transmission eléctron microscopy. J. Cell Anim. Biol. 2, 72–78 (2008)
Melo, D.H., Nascimento, M.Z., Oliveira, D.L., Neves, L.A., Annes, K.: Algorithms for automatic segmentation of bovine embryos produced in vitro. J. Phys: Conf. Ser. 490, 121–125 (2014). https://doi.org/10.1088/1742-6595/490/1/012125
Wong, C., Chen, A.A., Behr, B., Shen, S.: Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod. Biomed. Online 26, 120–129 (2013). https://doi.org/10.1016/j.rbmo.2012.11.003
Sutton-McDowall, M.L., Gosnell, M., Anwer, A.G., White, M., Purdey, M.: Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum. Reprod. 32(10), 2016–2025 (2017). https://doi.org/10.1093/humrep/dex261
Kovacs, P.: Embryos selection: the role of time-lapse monitoring. Reprod. Biol. Endocrinol. 12, 124 (2014). https://doi.org/10.1186/1477-7827-12-124
Montag, M., Toth, B., Strowitzki, T.: New approaches to embryo selection. Reprod. Biomed. Online 27, 539–546 (2013). https://doi.org/10.1016/j.rbmo.2013.05.013
VerMilyea, M.D., Tanb, L., Anthonya, J.T., Conaghanc, J., Ivanid, K., et al.: Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod. Biomed. Online 29, 729–736 (2014). https://doi.org/10.1016/j.rbmo.2014.09.005
Santos Filho, E., Noble, J.A., Poli, M., Griffiths, T., Emerson, G., Wells, D.: A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 27(9), 2641–2648 (2012). https://doi.org/10.1093/humrep/des219
Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neurocomputing 55, 169–186 (2003). https://doi.org/10.1016/S0925-2312(03)00431-4
Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623
van Loendersloot, L., van Welya, M., van der Veena, F., Bossuyt, P., Repping, S.: Selection of embryos for transfer in IVF: ranking embryos based on their implantation potential using morphological scoring. Reprod. Biomed Online 29, 222–230 (2014). https://doi.org/10.1016/j.rbmo.2014.04.016
Chen, F., Neubourg, D.D., Debrock, S., Peeraer, K., D’Hooghe, T., Spiessens, C.: Selecting the embryo with the highest implantation potential using a data mining based prediction model. Reprod. Biol. Endocrinol. 14, 10 (2016). https://doi.org/10.1186/s12958-016-0145-1
Richardson, A., et al.: A clinically useful simplified blastocyst grading system. Reprod. Biomed. Online 31, 523–530 (2015). https://doi.org/10.1016/j.rbmo.2015.06.017
Takahashi, M.B., Rocha, J.C., Núñez, E.G.F.: Optimization of artificial neural network by genetic algorithm for describing viral production from uniform design data. Process Biochem. 51, 422–430 (2016). https://doi.org/10.1016/j.procbio.2015.12.005
Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008). https://doi.org/10.1038/nbt1386
Tanomaru, J.: Motivação, fundamentos e aplicações de algoritmos genéticos. In: Proceedings of the II Congresso Brasileiros de Redes Neurais. II Escola de Redes Neurais, vol. 1, pp. 331–411 (1995)
Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14, 35–62 (1998). https://doi.org/10.1016/S0169-2070(97)00044-7
Huang, Y.: Advances in artificial neural networks - methodological development and application. Algorithms 2, 973–1007 (2009). https://doi.org/10.3390/algor2030973
Matos, F.D., Rocha, J.C., Nogueira, M.F.G.: A method using artificial neural networks to morphologically assess mouse blastocyst quality. J. Anim. Sci. Technol. 56, 15 (2014). https://doi.org/10.1186/2055-0391-56-15
Matos, F.D., Nogueira, M.F.G., Rocha, J.C.: Artificial intelligence meets the same challenges as humans in morphological classification of bovine blastocysts. Abstract of Proceedings of the 28th Annual Meeting of the Embryo Technology Society (SBTE), A209 Supporting Biotechnologies: Cryopreservation and Cryobiology, Image Analysis and Diagnosis, Molecular Biology and “Omics”. Anim. Reprod. 11, 489 (2014)
Rocha, J.C., Passália, F.J., Matos, F.D., Takahashi, M.B., Ciniciato, D.S., et al.: A method based on artificial intelligence to fully automatize the evaluation of bovine blastocysts image. Sci. Rep. 7, 7659 (2017). https://doi.org/10.1038/s41598-017-08104-9
Rocha, J.C., Passália, F.J., Matos, F.D., Takahashi, M.B., Maserati Jr., M.P.: Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination. Sci. Data 4, 170192 (2017). https://doi.org/10.1038/sdata.2017.192
Atherton, T.J., Kerbyson, D.J.: Size invariant circle detection. Image Vis. Comput. 17, 795–803 (1999). https://doi.org/10.1016/S0262-8856(98)00160-7
Siqueira, F.R., Schwartz, W.R., Predrini, H.: Multi-scale level co-occurence matrices for texture description. Neutocomputing 120, 336–345 (2013). https://doi.org/10.1016/j.neucom.2012.09.042
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. System Man Cybern. 3, 610–621 (1973)
Hu, Y., Zhao, C., Wang, H.: Directional analysis of texture images using gray level co-occurrence matrix. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 277–281 (2008). https://doi.org/10.1109/PACIIA.2008.279
Ludermir, T.B., Yamazaki, A., Zanchettin, C.: An optimization methodology for neural networks weights and architetures. IEEE Trans. Neural Netw. 17, 1452–1459 (2006). https://doi.org/10.1109/TNN.2006.881047
Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 22, 1341–1356 (2011). https://doi.org/10.1109/TNN.2011.2162110
Ciniciato, D.S., Takahashi, M.B., Nogueira, M.F.G., Rocha, J.C.: Potential use of smartphone as a tool to capture embryo digital images from stereomicroscope and to evaluate them by an artificial neural network. In: Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA), pp. 185–189 (2017). https://doi.org/10.5220/0006518501850189
Botigelli, R.C., et al.: Supplementing in vitro embryo production media by NPPC and sildenafil affect the cytoplasmic lipid content and gene expression of bovine cumulus-oocyte complexes and embryos. Reprod. Biol. 18, 66–75 (2018). https://doi.org/10.1016/j.repbio.2018.01.004
Acknowledgement
The author’s research is supported by grants #2012/50533-2, 2013-05083-1, 2006/06491-2, 2011/06179-7, 2012/20110-2 and 2016/19004-4 from São Paulo Research Foundation (FAPESP). We also thank Agência UNESP de Inovação (AUIN) for processing the national and international patents of the invention.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Guilherme, V.B. et al. (2019). Distinct Sources of a Bovine Blastocyst Digital Image Do not Produce the Same Classification by a Previously Trained Software Using Artificial Neural Network. In: Holzinger, A., Silva, H., Helfert, M. (eds) Computer-Human Interaction Research and Applications. CHIRA 2017. Communications in Computer and Information Science, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-030-32965-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-32965-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32964-8
Online ISBN: 978-3-030-32965-5
eBook Packages: Computer ScienceComputer Science (R0)