Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distinct Sources of a Bovine Blastocyst Digital Image Do not Produce the Same Classification by a Previously Trained Software Using Artificial Neural Network

  • Conference paper
  • First Online:
Computer-Human Interaction Research and Applications (CHIRA 2017)

Abstract

We develop an online graphical and intuitive interface connected to a server aiming to facilitate access to professionals worldwide that face problems with bovine blastocysts classification. The interface Blasto3Q (3Q is referred to the three qualities of the blastocyst grading) contains a description of 24 variables that are extracted from the image of the blastocyst and analyzed by three Artificial Neural Networks (ANNs) that classifies the same loaded image. The same embryo (i.e., the biological specimen) was submitted to digital image capture by the control group (inverted microscope with 40x of magnification) and to experimental group (stereomicroscope with maximum of magnification plus 4x zoom from the cell phone). The 36 images obtained from control and experimental groups were uploaded on the Blasto3Q. Each image from both sources was evaluated for segmentation and submitted (only if it could be properly or partially segmented) to the quality grade classification by the three ANNs of the Blasto3Q program. In the group control, all the images were properly segmented, whereas 38.9% (07/18) and 61.1% (11/18) of the images from the experimental group, respectively could not be segmented or were partially segmented. The percentage of agreement was calculated when the same blastocyst was evaluated by the same ANN from the two sources (control and experimental groups). On the 54 potential evaluations of the three ANNs (i.e., 18 images been evaluated by the three networks) from the experimental group only 22.2% agreed with evaluations of the control (12/54). Of the remaining 42 disagreed evaluations from experimental group, 21 were unable to be performed and 21 were wrongly processed when compared with control evaluation.

V. B. Guilherme, M. Pronunciate and P. H. dos Santos—Authors contributed equally to the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Instituto Brasileiro de Geografia e Estatística IBGE: Produção Pecuária Municipal 2016. IBGE 44, 14 (2016). E-book https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2016v44br.pdf

  2. Instituto Brasileiro de Geografia e Estatística IBGE. Diretoria de Pesquisas – DPE: Coordenação de População e Indicadores Sociais - COPIS. Digital doc. 1 (2017). ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2017/estimativa_dou_2017.pdf

    Google Scholar 

  3. Ereno, D.: Marcadores da Fertilização: Novas técnicas mapeiam a função de proteínas, carboidratos e lipídeos para obtenção de embriões bovinos de melhor qualidade. Tecnologia Pecuária, Revista FAPESP. e-book, 62 (2015). http://revistapesquisa.fapesp.br/wp-content/uploads/2015/05/062-067_embriao-bovino_231.pdf

  4. Mello, R.R.C.: In vitro embryo production in cattle. Rev. Bras. Reprod. Anim. 40(2), 58–64 (2016)

    Google Scholar 

  5. Hyttel, P., Sinowatz, F., Vejsted, M., et al.: Essential of Domestic Animal Embryology. Sauders/Elsevier, Edinburgh (2010)

    Google Scholar 

  6. Fair, T., Lonergan, P., Dinnyes, A., Cottel, D.C., Hyttel, P., et al.: Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol. Reprod. Dev. 58, 186–195 (2001). https://doi.org/10.1002/1098-2795(200102)58:2%3C186:AID-MRD8%3E3.0.CO;2-N

    Article  Google Scholar 

  7. Rizos, D., Fair, T., Papadopoulos, S., Boland, M.P., Lonergan, P.: Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62, 320–327 (2002). https://doi.org/10.1002/mrd.10138

    Article  Google Scholar 

  8. Holm, P., Callesen, H.: In vivo versus in vitro produced bovine ova: similarities and differences relevant for practical application. Reprod. Nutr. Dev. 38(6), 579–594 (1998)

    Article  Google Scholar 

  9. Camargo, L.S.A., Viana, J.H.M., Sá, W.F., Ferreira, F.M., Ramos, A.A., et al.: Factors influencing in vitro embryo production. Anim. Reprod. 3(1), 19–28 (2006)

    Google Scholar 

  10. Crosier, A.E., Farin, P.W., Dykstra, M.J., Alexander, J.E., Farin, C.E.: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol. Reprod. 64, 1375–1385 (2001)

    Article  Google Scholar 

  11. Dode, M.A.N., Leme, L.O., Sprícigo, L.F.W.: Cryopreservation of in vitro produced bovine embryos. Rev. Bras. Repro. Anim. 37(2), 145–150 (2013)

    Google Scholar 

  12. Bó, G., Mapletoft, R.: Evaluation and classification of bovine embryos. Anim. Reprod. 54, 344–348 (2013)

    Google Scholar 

  13. Lindner, G., Wright, R.W.J.: Bovine embryo morphology and avaluation. Theriogenology 20, 407–416 (1983). https://doi.org/10.1016/0093-691X(83)90201-7

    Article  Google Scholar 

  14. Russ, J.C.: The Image Processing Handbook, 5th edn. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  15. Bényei, B., Komlósi, I., Pécsi, A., Pollott, G., Marcos, C.H., et al.: The effect of internal and external factors on bovine embryo transfer results in a tropical environment. Anim. Reprod. Sci. 93, 268–279 (2006). https://doi.org/10.1016/j.anireprosci.2005.07.012

    Article  Google Scholar 

  16. Farin, P.W., Britt, J.H., Shaw, D.W., Slenning, B.D.: Agreement among evaluators of bovine embryos produced in vivo or in vitro. Theriogenology 95, 339–349 (1995). https://doi.org/10.1016/0093-691X(95)00189-F

    Article  Google Scholar 

  17. Manna, C., Nanni, L., Lumini, A., Pappalardo, S.: Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online 26, 42–49 (2013). https://doi.org/10.1016/j.rbmo.2012.09.015

    Article  Google Scholar 

  18. Rocha, J.C., Passalia, F., Matos, F.D., Maserati Jr., M.P., Alves, M.F., et al.: Methods for assessing the quality of mammalian embryos: how far we are from the gold standard? JBRA Assist. Reprod. 20(3), 150–158 (2016). https://doi.org/10.5935/1518-0557.20160033

    Article  Google Scholar 

  19. Hoshi, H.: In vitro production of bovine embryos and their application for embryo transfer. Thereogenology 59, 675–685 (2003). https://doi.org/10.1016/S0093-691X(02)01247-5

    Article  Google Scholar 

  20. Held, E., Mertens, E.M., Mohammadi-Sangcheshmeh, A.M., Salilew-Wondim, D., Bessenfelder, U., et al.: Zona pellucida birefringence correlates with developmental capacity of bovine oocytes classified by maturational environment, COC morphology and G6PDH activity. Reprod. Fert. Dev. 24, 568–579 (2012). https://doi.org/10.1071/RD11112

    Article  Google Scholar 

  21. López-Damiám, E.P., Galina, C.S., Merchant, H., Cedilo-Peláez, C., Aspron, M.: Assessment of Bos taurus embryos comparing stereoscopyc microscopy and transmission eléctron microscopy. J. Cell Anim. Biol. 2, 72–78 (2008)

    Google Scholar 

  22. Melo, D.H., Nascimento, M.Z., Oliveira, D.L., Neves, L.A., Annes, K.: Algorithms for automatic segmentation of bovine embryos produced in vitro. J. Phys: Conf. Ser. 490, 121–125 (2014). https://doi.org/10.1088/1742-6595/490/1/012125

    Article  Google Scholar 

  23. Wong, C., Chen, A.A., Behr, B., Shen, S.: Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod. Biomed. Online 26, 120–129 (2013). https://doi.org/10.1016/j.rbmo.2012.11.003

    Article  Google Scholar 

  24. Sutton-McDowall, M.L., Gosnell, M., Anwer, A.G., White, M., Purdey, M.: Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum. Reprod. 32(10), 2016–2025 (2017). https://doi.org/10.1093/humrep/dex261

    Article  Google Scholar 

  25. Kovacs, P.: Embryos selection: the role of time-lapse monitoring. Reprod. Biol. Endocrinol. 12, 124 (2014). https://doi.org/10.1186/1477-7827-12-124

    Article  Google Scholar 

  26. Montag, M., Toth, B., Strowitzki, T.: New approaches to embryo selection. Reprod. Biomed. Online 27, 539–546 (2013). https://doi.org/10.1016/j.rbmo.2013.05.013

    Article  Google Scholar 

  27. VerMilyea, M.D., Tanb, L., Anthonya, J.T., Conaghanc, J., Ivanid, K., et al.: Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod. Biomed. Online 29, 729–736 (2014). https://doi.org/10.1016/j.rbmo.2014.09.005

    Article  Google Scholar 

  28. Santos Filho, E., Noble, J.A., Poli, M., Griffiths, T., Emerson, G., Wells, D.: A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 27(9), 2641–2648 (2012). https://doi.org/10.1093/humrep/des219

    Article  Google Scholar 

  29. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neurocomputing 55, 169–186 (2003). https://doi.org/10.1016/S0925-2312(03)00431-4

    Article  Google Scholar 

  30. Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  31. van Loendersloot, L., van Welya, M., van der Veena, F., Bossuyt, P., Repping, S.: Selection of embryos for transfer in IVF: ranking embryos based on their implantation potential using morphological scoring. Reprod. Biomed Online 29, 222–230 (2014). https://doi.org/10.1016/j.rbmo.2014.04.016

    Article  Google Scholar 

  32. Chen, F., Neubourg, D.D., Debrock, S., Peeraer, K., D’Hooghe, T., Spiessens, C.: Selecting the embryo with the highest implantation potential using a data mining based prediction model. Reprod. Biol. Endocrinol. 14, 10 (2016). https://doi.org/10.1186/s12958-016-0145-1

    Article  Google Scholar 

  33. Richardson, A., et al.: A clinically useful simplified blastocyst grading system. Reprod. Biomed. Online 31, 523–530 (2015). https://doi.org/10.1016/j.rbmo.2015.06.017

    Article  Google Scholar 

  34. Takahashi, M.B., Rocha, J.C., Núñez, E.G.F.: Optimization of artificial neural network by genetic algorithm for describing viral production from uniform design data. Process Biochem. 51, 422–430 (2016). https://doi.org/10.1016/j.procbio.2015.12.005

    Article  Google Scholar 

  35. Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008). https://doi.org/10.1038/nbt1386

    Article  Google Scholar 

  36. Tanomaru, J.: Motivação, fundamentos e aplicações de algoritmos genéticos. In: Proceedings of the II Congresso Brasileiros de Redes Neurais. II Escola de Redes Neurais, vol. 1, pp. 331–411 (1995)

    Google Scholar 

  37. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14, 35–62 (1998). https://doi.org/10.1016/S0169-2070(97)00044-7

    Article  Google Scholar 

  38. Huang, Y.: Advances in artificial neural networks - methodological development and application. Algorithms 2, 973–1007 (2009). https://doi.org/10.3390/algor2030973

    Article  MathSciNet  MATH  Google Scholar 

  39. Matos, F.D., Rocha, J.C., Nogueira, M.F.G.: A method using artificial neural networks to morphologically assess mouse blastocyst quality. J. Anim. Sci. Technol. 56, 15 (2014). https://doi.org/10.1186/2055-0391-56-15

    Article  Google Scholar 

  40. Matos, F.D., Nogueira, M.F.G., Rocha, J.C.: Artificial intelligence meets the same challenges as humans in morphological classification of bovine blastocysts. Abstract of Proceedings of the 28th Annual Meeting of the Embryo Technology Society (SBTE), A209 Supporting Biotechnologies: Cryopreservation and Cryobiology, Image Analysis and Diagnosis, Molecular Biology and “Omics”. Anim. Reprod. 11, 489 (2014)

    Google Scholar 

  41. Rocha, J.C., Passália, F.J., Matos, F.D., Takahashi, M.B., Ciniciato, D.S., et al.: A method based on artificial intelligence to fully automatize the evaluation of bovine blastocysts image. Sci. Rep. 7, 7659 (2017). https://doi.org/10.1038/s41598-017-08104-9

    Article  Google Scholar 

  42. Rocha, J.C., Passália, F.J., Matos, F.D., Takahashi, M.B., Maserati Jr., M.P.: Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination. Sci. Data 4, 170192 (2017). https://doi.org/10.1038/sdata.2017.192

    Article  Google Scholar 

  43. Atherton, T.J., Kerbyson, D.J.: Size invariant circle detection. Image Vis. Comput. 17, 795–803 (1999). https://doi.org/10.1016/S0262-8856(98)00160-7

    Article  Google Scholar 

  44. Siqueira, F.R., Schwartz, W.R., Predrini, H.: Multi-scale level co-occurence matrices for texture description. Neutocomputing 120, 336–345 (2013). https://doi.org/10.1016/j.neucom.2012.09.042

    Article  Google Scholar 

  45. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. System Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  46. Hu, Y., Zhao, C., Wang, H.: Directional analysis of texture images using gray level co-occurrence matrix. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 277–281 (2008). https://doi.org/10.1109/PACIIA.2008.279

  47. Ludermir, T.B., Yamazaki, A., Zanchettin, C.: An optimization methodology for neural networks weights and architetures. IEEE Trans. Neural Netw. 17, 1452–1459 (2006). https://doi.org/10.1109/TNN.2006.881047

    Article  Google Scholar 

  48. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Comprehensive review of neural network-based prediction intervals and new advances. IEEE Trans. Neural Netw. 22, 1341–1356 (2011). https://doi.org/10.1109/TNN.2011.2162110

    Article  Google Scholar 

  49. Ciniciato, D.S., Takahashi, M.B., Nogueira, M.F.G., Rocha, J.C.: Potential use of smartphone as a tool to capture embryo digital images from stereomicroscope and to evaluate them by an artificial neural network. In: Proceedings of the International Conference on Computer-Human Interaction Research and Applications (CHIRA), pp. 185–189 (2017). https://doi.org/10.5220/0006518501850189

  50. Botigelli, R.C., et al.: Supplementing in vitro embryo production media by NPPC and sildenafil affect the cytoplasmic lipid content and gene expression of bovine cumulus-oocyte complexes and embryos. Reprod. Biol. 18, 66–75 (2018). https://doi.org/10.1016/j.repbio.2018.01.004

    Article  Google Scholar 

Download references

Acknowledgement

The author’s research is supported by grants #2012/50533-2, 2013-05083-1, 2006/06491-2, 2011/06179-7, 2012/20110-2 and 2016/19004-4 from São Paulo Research Foundation (FAPESP). We also thank Agência UNESP de Inovação (AUIN) for processing the national and international patents of the invention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Fábio Gouveia Nogueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guilherme, V.B. et al. (2019). Distinct Sources of a Bovine Blastocyst Digital Image Do not Produce the Same Classification by a Previously Trained Software Using Artificial Neural Network. In: Holzinger, A., Silva, H., Helfert, M. (eds) Computer-Human Interaction Research and Applications. CHIRA 2017. Communications in Computer and Information Science, vol 654. Springer, Cham. https://doi.org/10.1007/978-3-030-32965-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32965-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32964-8

  • Online ISBN: 978-3-030-32965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics